| Step | Hyp | Ref
| Expression |
| 1 | | sitgval.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑊) |
| 2 | | sitgval.j |
. . . . . . . . 9
⊢ 𝐽 = (TopOpen‘𝑊) |
| 3 | | sitgval.s |
. . . . . . . . 9
⊢ 𝑆 = (sigaGen‘𝐽) |
| 4 | | sitgval.0 |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑊) |
| 5 | | sitgval.x |
. . . . . . . . 9
⊢ · = (
·𝑠 ‘𝑊) |
| 6 | | sitgval.h |
. . . . . . . . 9
⊢ 𝐻 =
(ℝHom‘(Scalar‘𝑊)) |
| 7 | | sitgval.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| 8 | | sitgval.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ∪ ran
measures) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | sitgval 30394 |
. . . . . . . 8
⊢ (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))))) |
| 10 | 9 | dmeqd 5326 |
. . . . . . 7
⊢ (𝜑 → dom (𝑊sitg𝑀) = dom (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))))) |
| 11 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥)))) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥)))) |
| 12 | 11 | dmmpt 5630 |
. . . . . . 7
⊢ dom
(𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥)))) = {𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ∣ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))) ∈ V} |
| 13 | 10, 12 | syl6eq 2672 |
. . . . . 6
⊢ (𝜑 → dom (𝑊sitg𝑀) = {𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ∣ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))) ∈ V}) |
| 14 | 13 | eleq2d 2687 |
. . . . 5
⊢ (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ 𝐹 ∈ {𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ∣ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))) ∈ V})) |
| 15 | | rneq 5351 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → ran 𝑓 = ran 𝐹) |
| 16 | 15 | difeq1d 3727 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (ran 𝑓 ∖ { 0 }) = (ran 𝐹 ∖ { 0 })) |
| 17 | | cnveq 5296 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) |
| 18 | 17 | imaeq1d 5465 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (◡𝑓 “ {𝑥}) = (◡𝐹 “ {𝑥})) |
| 19 | 18 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (𝑀‘(◡𝑓 “ {𝑥})) = (𝑀‘(◡𝐹 “ {𝑥}))) |
| 20 | 19 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) = (𝐻‘(𝑀‘(◡𝐹 “ {𝑥})))) |
| 21 | 20 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥) = ((𝐻‘(𝑀‘(◡𝐹 “ {𝑥}))) · 𝑥)) |
| 22 | 16, 21 | mpteq12dv 4733 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝐹 “ {𝑥}))) · 𝑥))) |
| 23 | 22 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝐹 “ {𝑥}))) · 𝑥)))) |
| 24 | 23 | eleq1d 2686 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))) ∈ V ↔ (𝑊 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝐹 “ {𝑥}))) · 𝑥))) ∈ V)) |
| 25 | 24 | elrab 3363 |
. . . . 5
⊢ (𝐹 ∈ {𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ∣ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))) ∈ V} ↔ (𝐹 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ∧ (𝑊 Σg
(𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝐹 “ {𝑥}))) · 𝑥))) ∈ V)) |
| 26 | 14, 25 | syl6bb 276 |
. . . 4
⊢ (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ∧ (𝑊 Σg
(𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝐹 “ {𝑥}))) · 𝑥))) ∈ V))) |
| 27 | | ovex 6678 |
. . . . 5
⊢ (𝑊 Σg
(𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝐹 “ {𝑥}))) · 𝑥))) ∈ V |
| 28 | 27 | biantru 526 |
. . . 4
⊢ (𝐹 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↔ (𝐹 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ∧ (𝑊 Σg
(𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝐹 “ {𝑥}))) · 𝑥))) ∈ V)) |
| 29 | 26, 28 | syl6bbr 278 |
. . 3
⊢ (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ 𝐹 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈
(0[,)+∞))})) |
| 30 | | rneq 5351 |
. . . . . 6
⊢ (𝑔 = 𝐹 → ran 𝑔 = ran 𝐹) |
| 31 | 30 | eleq1d 2686 |
. . . . 5
⊢ (𝑔 = 𝐹 → (ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
| 32 | 30 | difeq1d 3727 |
. . . . . 6
⊢ (𝑔 = 𝐹 → (ran 𝑔 ∖ { 0 }) = (ran 𝐹 ∖ { 0 })) |
| 33 | | cnveq 5296 |
. . . . . . . . 9
⊢ (𝑔 = 𝐹 → ◡𝑔 = ◡𝐹) |
| 34 | 33 | imaeq1d 5465 |
. . . . . . . 8
⊢ (𝑔 = 𝐹 → (◡𝑔 “ {𝑥}) = (◡𝐹 “ {𝑥})) |
| 35 | 34 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑔 = 𝐹 → (𝑀‘(◡𝑔 “ {𝑥})) = (𝑀‘(◡𝐹 “ {𝑥}))) |
| 36 | 35 | eleq1d 2686 |
. . . . . 6
⊢ (𝑔 = 𝐹 → ((𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞))) |
| 37 | 32, 36 | raleqbidv 3152 |
. . . . 5
⊢ (𝑔 = 𝐹 → (∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔
∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞))) |
| 38 | 31, 37 | anbi12d 747 |
. . . 4
⊢ (𝑔 = 𝐹 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)))) |
| 39 | 38 | elrab 3363 |
. . 3
⊢ (𝐹 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)))) |
| 40 | 29, 39 | syl6bb 276 |
. 2
⊢ (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈
(0[,)+∞))))) |
| 41 | | 3anass 1042 |
. 2
⊢ ((𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ (ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)))) |
| 42 | 40, 41 | syl6bbr 278 |
1
⊢ (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)))) |