MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoiso2 Structured version   Visualization version   GIF version

Theorem smoiso2 7466
Description: The strictly monotone ordinal functions are also epsilon isomorphisms of subclasses of On. (Contributed by Mario Carneiro, 20-Mar-2013.)
Assertion
Ref Expression
smoiso2 ((Ord 𝐴𝐵 ⊆ On) → ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (𝐴, 𝐵)))

Proof of Theorem smoiso2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fof 6115 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 smo11 7461 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ Smo 𝐹) → 𝐹:𝐴1-1𝐵)
31, 2sylan 488 . . . . . 6 ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → 𝐹:𝐴1-1𝐵)
4 simpl 473 . . . . . 6 ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → 𝐹:𝐴onto𝐵)
5 df-f1o 5895 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
63, 4, 5sylanbrc 698 . . . . 5 ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → 𝐹:𝐴1-1-onto𝐵)
76adantl 482 . . . 4 (((Ord 𝐴𝐵 ⊆ On) ∧ (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)) → 𝐹:𝐴1-1-onto𝐵)
8 fofn 6117 . . . . . 6 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
9 smoord 7462 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦 ↔ (𝐹𝑥) ∈ (𝐹𝑦)))
10 epel 5032 . . . . . . . 8 (𝑥 E 𝑦𝑥𝑦)
11 fvex 6201 . . . . . . . . 9 (𝐹𝑦) ∈ V
1211epelc 5031 . . . . . . . 8 ((𝐹𝑥) E (𝐹𝑦) ↔ (𝐹𝑥) ∈ (𝐹𝑦))
139, 10, 123bitr4g 303 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
1413ralrimivva 2971 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
158, 14sylan 488 . . . . 5 ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
1615adantl 482 . . . 4 (((Ord 𝐴𝐵 ⊆ On) ∧ (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)) → ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦)))
17 df-isom 5897 . . . 4 (𝐹 Isom E , E (𝐴, 𝐵) ↔ (𝐹:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦 ↔ (𝐹𝑥) E (𝐹𝑦))))
187, 16, 17sylanbrc 698 . . 3 (((Ord 𝐴𝐵 ⊆ On) ∧ (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)) → 𝐹 Isom E , E (𝐴, 𝐵))
1918ex 450 . 2 ((Ord 𝐴𝐵 ⊆ On) → ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) → 𝐹 Isom E , E (𝐴, 𝐵)))
20 isof1o 6573 . . . . . . 7 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
21 f1ofo 6144 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
2220, 21syl 17 . . . . . 6 (𝐹 Isom E , E (𝐴, 𝐵) → 𝐹:𝐴onto𝐵)
23223ad2ant1 1082 . . . . 5 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → 𝐹:𝐴onto𝐵)
24 smoiso 7459 . . . . 5 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Smo 𝐹)
2523, 24jca 554 . . . 4 ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → (𝐹:𝐴onto𝐵 ∧ Smo 𝐹))
26253expib 1268 . . 3 (𝐹 Isom E , E (𝐴, 𝐵) → ((Ord 𝐴𝐵 ⊆ On) → (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)))
2726com12 32 . 2 ((Ord 𝐴𝐵 ⊆ On) → (𝐹 Isom E , E (𝐴, 𝐵) → (𝐹:𝐴onto𝐵 ∧ Smo 𝐹)))
2819, 27impbid 202 1 ((Ord 𝐴𝐵 ⊆ On) → ((𝐹:𝐴onto𝐵 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990  wral 2912  wss 3574   class class class wbr 4653   E cep 5028  Ord word 5722  Oncon0 5723   Fn wfn 5883  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888   Isom wiso 5889  Smo wsmo 7442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-smo 7443
This theorem is referenced by:  oismo  8445  cofsmo  9091
  Copyright terms: Public domain W3C validator