MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoiso2 Structured version   Visualization version   Unicode version

Theorem smoiso2 7466
Description: The strictly monotone ordinal functions are also epsilon isomorphisms of subclasses of  On. (Contributed by Mario Carneiro, 20-Mar-2013.)
Assertion
Ref Expression
smoiso2  |-  ( ( Ord  A  /\  B  C_  On )  ->  (
( F : A -onto-> B  /\  Smo  F )  <-> 
F  Isom  _E  ,  _E  ( A ,  B ) ) )

Proof of Theorem smoiso2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fof 6115 . . . . . . 7  |-  ( F : A -onto-> B  ->  F : A --> B )
2 smo11 7461 . . . . . . 7  |-  ( ( F : A --> B  /\  Smo  F )  ->  F : A -1-1-> B )
31, 2sylan 488 . . . . . 6  |-  ( ( F : A -onto-> B  /\  Smo  F )  ->  F : A -1-1-> B )
4 simpl 473 . . . . . 6  |-  ( ( F : A -onto-> B  /\  Smo  F )  ->  F : A -onto-> B )
5 df-f1o 5895 . . . . . 6  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
63, 4, 5sylanbrc 698 . . . . 5  |-  ( ( F : A -onto-> B  /\  Smo  F )  ->  F : A -1-1-onto-> B )
76adantl 482 . . . 4  |-  ( ( ( Ord  A  /\  B  C_  On )  /\  ( F : A -onto-> B  /\  Smo  F ) )  ->  F : A -1-1-onto-> B
)
8 fofn 6117 . . . . . 6  |-  ( F : A -onto-> B  ->  F  Fn  A )
9 smoord 7462 . . . . . . . 8  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x  e.  y  <->  ( F `  x )  e.  ( F `  y ) ) )
10 epel 5032 . . . . . . . 8  |-  ( x  _E  y  <->  x  e.  y )
11 fvex 6201 . . . . . . . . 9  |-  ( F `
 y )  e. 
_V
1211epelc 5031 . . . . . . . 8  |-  ( ( F `  x )  _E  ( F `  y )  <->  ( F `  x )  e.  ( F `  y ) )
139, 10, 123bitr4g 303 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x  _E  y  <->  ( F `  x )  _E  ( F `  y )
) )
1413ralrimivva 2971 . . . . . 6  |-  ( ( F  Fn  A  /\  Smo  F )  ->  A. x  e.  A  A. y  e.  A  ( x  _E  y  <->  ( F `  x )  _E  ( F `  y )
) )
158, 14sylan 488 . . . . 5  |-  ( ( F : A -onto-> B  /\  Smo  F )  ->  A. x  e.  A  A. y  e.  A  ( x  _E  y  <->  ( F `  x )  _E  ( F `  y ) ) )
1615adantl 482 . . . 4  |-  ( ( ( Ord  A  /\  B  C_  On )  /\  ( F : A -onto-> B  /\  Smo  F ) )  ->  A. x  e.  A  A. y  e.  A  ( x  _E  y  <->  ( F `  x )  _E  ( F `  y ) ) )
17 df-isom 5897 . . . 4  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  <-> 
( F : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x  _E  y  <->  ( F `  x )  _E  ( F `  y ) ) ) )
187, 16, 17sylanbrc 698 . . 3  |-  ( ( ( Ord  A  /\  B  C_  On )  /\  ( F : A -onto-> B  /\  Smo  F ) )  ->  F  Isom  _E  ,  _E  ( A ,  B
) )
1918ex 450 . 2  |-  ( ( Ord  A  /\  B  C_  On )  ->  (
( F : A -onto-> B  /\  Smo  F )  ->  F  Isom  _E  ,  _E  ( A ,  B
) ) )
20 isof1o 6573 . . . . . . 7  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  F : A -1-1-onto-> B
)
21 f1ofo 6144 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  F : A -onto-> B )
2220, 21syl 17 . . . . . 6  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  F : A -onto-> B )
23223ad2ant1 1082 . . . . 5  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  F : A -onto-> B )
24 smoiso 7459 . . . . 5  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  ->  Smo  F )
2523, 24jca 554 . . . 4  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  B  C_  On )  -> 
( F : A -onto-> B  /\  Smo  F ) )
26253expib 1268 . . 3  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  ( ( Ord 
A  /\  B  C_  On )  ->  ( F : A -onto-> B  /\  Smo  F
) ) )
2726com12 32 . 2  |-  ( ( Ord  A  /\  B  C_  On )  ->  ( F  Isom  _E  ,  _E  ( A ,  B )  ->  ( F : A -onto-> B  /\  Smo  F
) ) )
2819, 27impbid 202 1  |-  ( ( Ord  A  /\  B  C_  On )  ->  (
( F : A -onto-> B  /\  Smo  F )  <-> 
F  Isom  _E  ,  _E  ( A ,  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990   A.wral 2912    C_ wss 3574   class class class wbr 4653    _E cep 5028   Ord word 5722   Oncon0 5723    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889   Smo wsmo 7442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-smo 7443
This theorem is referenced by:  oismo  8445  cofsmo  9091
  Copyright terms: Public domain W3C validator