MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snfil Structured version   Visualization version   Unicode version

Theorem snfil 21668
Description: A singleton is a filter. Example 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 16-Sep-2007.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
snfil  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  { A }  e.  ( Fil `  A ) )

Proof of Theorem snfil
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 velsn 4193 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
2 eqimss 3657 . . . . 5  |-  ( x  =  A  ->  x  C_  A )
32pm4.71ri 665 . . . 4  |-  ( x  =  A  <->  ( x  C_  A  /\  x  =  A ) )
41, 3bitri 264 . . 3  |-  ( x  e.  { A }  <->  ( x  C_  A  /\  x  =  A )
)
54a1i 11 . 2  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  (
x  e.  { A } 
<->  ( x  C_  A  /\  x  =  A
) ) )
6 elex 3212 . . 3  |-  ( A  e.  B  ->  A  e.  _V )
76adantr 481 . 2  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  A  e.  _V )
8 eqid 2622 . . . 4  |-  A  =  A
9 eqsbc3 3475 . . . 4  |-  ( A  e.  B  ->  ( [. A  /  x ]. x  =  A  <->  A  =  A ) )
108, 9mpbiri 248 . . 3  |-  ( A  e.  B  ->  [. A  /  x ]. x  =  A )
1110adantr 481 . 2  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  [. A  /  x ]. x  =  A )
12 simpr 477 . . . . 5  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  A  =/=  (/) )
1312necomd 2849 . . . 4  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  (/)  =/=  A
)
1413neneqd 2799 . . 3  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  -.  (/)  =  A )
15 0ex 4790 . . . 4  |-  (/)  e.  _V
16 eqsbc3 3475 . . . 4  |-  ( (/)  e.  _V  ->  ( [. (/)  /  x ]. x  =  A  <->  (/)  =  A ) )
1715, 16ax-mp 5 . . 3  |-  ( [. (/)  /  x ]. x  =  A  <->  (/)  =  A )
1814, 17sylnibr 319 . 2  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  -.  [. (/)  /  x ]. x  =  A )
19 sseq1 3626 . . . . . . 7  |-  ( x  =  A  ->  (
x  C_  y  <->  A  C_  y
) )
2019anbi2d 740 . . . . . 6  |-  ( x  =  A  ->  (
( y  C_  A  /\  x  C_  y )  <-> 
( y  C_  A  /\  A  C_  y ) ) )
21 eqss 3618 . . . . . . 7  |-  ( y  =  A  <->  ( y  C_  A  /\  A  C_  y ) )
2221biimpri 218 . . . . . 6  |-  ( ( y  C_  A  /\  A  C_  y )  -> 
y  =  A )
2320, 22syl6bi 243 . . . . 5  |-  ( x  =  A  ->  (
( y  C_  A  /\  x  C_  y )  ->  y  =  A ) )
2423com12 32 . . . 4  |-  ( ( y  C_  A  /\  x  C_  y )  -> 
( x  =  A  ->  y  =  A ) )
25243adant1 1079 . . 3  |-  ( ( ( A  e.  B  /\  A  =/=  (/) )  /\  y  C_  A  /\  x  C_  y )  ->  (
x  =  A  -> 
y  =  A ) )
26 sbcid 3452 . . 3  |-  ( [. x  /  x ]. x  =  A  <->  x  =  A
)
27 vex 3203 . . . 4  |-  y  e. 
_V
28 eqsbc3 3475 . . . 4  |-  ( y  e.  _V  ->  ( [. y  /  x ]. x  =  A  <->  y  =  A ) )
2927, 28ax-mp 5 . . 3  |-  ( [. y  /  x ]. x  =  A  <->  y  =  A )
3025, 26, 293imtr4g 285 . 2  |-  ( ( ( A  e.  B  /\  A  =/=  (/) )  /\  y  C_  A  /\  x  C_  y )  ->  ( [. x  /  x ]. x  =  A  ->  [. y  /  x ]. x  =  A
) )
31 ineq12 3809 . . . . . 6  |-  ( ( y  =  A  /\  x  =  A )  ->  ( y  i^i  x
)  =  ( A  i^i  A ) )
32 inidm 3822 . . . . . 6  |-  ( A  i^i  A )  =  A
3331, 32syl6eq 2672 . . . . 5  |-  ( ( y  =  A  /\  x  =  A )  ->  ( y  i^i  x
)  =  A )
3429, 26, 33syl2anb 496 . . . 4  |-  ( (
[. y  /  x ]. x  =  A  /\  [. x  /  x ]. x  =  A
)  ->  ( y  i^i  x )  =  A )
3527inex1 4799 . . . . 5  |-  ( y  i^i  x )  e. 
_V
36 eqsbc3 3475 . . . . 5  |-  ( ( y  i^i  x )  e.  _V  ->  ( [. ( y  i^i  x
)  /  x ]. x  =  A  <->  ( y  i^i  x )  =  A ) )
3735, 36ax-mp 5 . . . 4  |-  ( [. ( y  i^i  x
)  /  x ]. x  =  A  <->  ( y  i^i  x )  =  A )
3834, 37sylibr 224 . . 3  |-  ( (
[. y  /  x ]. x  =  A  /\  [. x  /  x ]. x  =  A
)  ->  [. ( y  i^i  x )  /  x ]. x  =  A )
3938a1i 11 . 2  |-  ( ( ( A  e.  B  /\  A  =/=  (/) )  /\  y  C_  A  /\  x  C_  A )  ->  (
( [. y  /  x ]. x  =  A  /\  [. x  /  x ]. x  =  A
)  ->  [. ( y  i^i  x )  /  x ]. x  =  A ) )
405, 7, 11, 18, 30, 39isfild 21662 1  |-  ( ( A  e.  B  /\  A  =/=  (/) )  ->  { A }  e.  ( Fil `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   [.wsbc 3435    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   ` cfv 5888   Filcfil 21649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-fbas 19743  df-fil 21650
This theorem is referenced by:  snfbas  21670
  Copyright terms: Public domain W3C validator