MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onomeneq Structured version   Visualization version   GIF version

Theorem onomeneq 8150
Description: An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of [TakeutiZaring] p. 90 and its converse. (Contributed by NM, 26-Jul-2004.)
Assertion
Ref Expression
onomeneq ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem onomeneq
StepHypRef Expression
1 php5 8148 . . . . . . . . 9 (𝐵 ∈ ω → ¬ 𝐵 ≈ suc 𝐵)
21ad2antlr 763 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ 𝐵 ≈ suc 𝐵)
3 enen1 8100 . . . . . . . . 9 (𝐴𝐵 → (𝐴 ≈ suc 𝐵𝐵 ≈ suc 𝐵))
43adantl 482 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 ≈ suc 𝐵𝐵 ≈ suc 𝐵))
52, 4mtbird 315 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ 𝐴 ≈ suc 𝐵)
6 peano2 7086 . . . . . . . . . . . . . 14 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
7 sssucid 5802 . . . . . . . . . . . . . 14 𝐵 ⊆ suc 𝐵
8 ssdomg 8001 . . . . . . . . . . . . . 14 (suc 𝐵 ∈ ω → (𝐵 ⊆ suc 𝐵𝐵 ≼ suc 𝐵))
96, 7, 8mpisyl 21 . . . . . . . . . . . . 13 (𝐵 ∈ ω → 𝐵 ≼ suc 𝐵)
10 endomtr 8014 . . . . . . . . . . . . 13 ((𝐴𝐵𝐵 ≼ suc 𝐵) → 𝐴 ≼ suc 𝐵)
119, 10sylan2 491 . . . . . . . . . . . 12 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ≼ suc 𝐵)
1211ancoms 469 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴 ≼ suc 𝐵)
1312a1d 25 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ 𝐴𝐵) → (ω ⊆ 𝐴𝐴 ≼ suc 𝐵))
1413adantll 750 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (ω ⊆ 𝐴𝐴 ≼ suc 𝐵))
15 ssel 3597 . . . . . . . . . . . . . . 15 (ω ⊆ 𝐴 → (𝐵 ∈ ω → 𝐵𝐴))
1615com12 32 . . . . . . . . . . . . . 14 (𝐵 ∈ ω → (ω ⊆ 𝐴𝐵𝐴))
1716adantr 481 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (ω ⊆ 𝐴𝐵𝐴))
18 eloni 5733 . . . . . . . . . . . . . 14 (𝐴 ∈ On → Ord 𝐴)
19 ordelsuc 7020 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ Ord 𝐴) → (𝐵𝐴 ↔ suc 𝐵𝐴))
2018, 19sylan2 491 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ suc 𝐵𝐴))
2117, 20sylibd 229 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (ω ⊆ 𝐴 → suc 𝐵𝐴))
22 ssdomg 8001 . . . . . . . . . . . . 13 (𝐴 ∈ On → (suc 𝐵𝐴 → suc 𝐵𝐴))
2322adantl 482 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (suc 𝐵𝐴 → suc 𝐵𝐴))
2421, 23syld 47 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (ω ⊆ 𝐴 → suc 𝐵𝐴))
2524ancoms 469 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (ω ⊆ 𝐴 → suc 𝐵𝐴))
2625adantr 481 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (ω ⊆ 𝐴 → suc 𝐵𝐴))
2714, 26jcad 555 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (ω ⊆ 𝐴 → (𝐴 ≼ suc 𝐵 ∧ suc 𝐵𝐴)))
28 sbth 8080 . . . . . . . 8 ((𝐴 ≼ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐴 ≈ suc 𝐵)
2927, 28syl6 35 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (ω ⊆ 𝐴𝐴 ≈ suc 𝐵))
305, 29mtod 189 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ ω ⊆ 𝐴)
31 ordom 7074 . . . . . . . . 9 Ord ω
32 ordtri1 5756 . . . . . . . . 9 ((Ord ω ∧ Ord 𝐴) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
3331, 18, 32sylancr 695 . . . . . . . 8 (𝐴 ∈ On → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
3433con2bid 344 . . . . . . 7 (𝐴 ∈ On → (𝐴 ∈ ω ↔ ¬ ω ⊆ 𝐴))
3534ad2antrr 762 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 ∈ ω ↔ ¬ ω ⊆ 𝐴))
3630, 35mpbird 247 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴 ∈ ω)
37 simplr 792 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ∈ ω)
3836, 37jca 554 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
39 nneneq 8143 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
4039biimpa 501 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴 = 𝐵)
4138, 40sylancom 701 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴 = 𝐵)
4241ex 450 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
43 eqeng 7989 . . 3 (𝐴 ∈ On → (𝐴 = 𝐵𝐴𝐵))
4443adantr 481 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵𝐴𝐵))
4542, 44impbid 202 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wss 3574   class class class wbr 4653  Ord word 5722  Oncon0 5723  suc csuc 5725  ωcom 7065  cen 7952  cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by:  onfin  8151  ficardom  8787  finnisoeu  8936
  Copyright terms: Public domain W3C validator