MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soex Structured version   Visualization version   Unicode version

Theorem soex 7109
Description: If the relation in a strict order is a set, then the base field is also a set. (Contributed by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
soex  |-  ( ( R  Or  A  /\  R  e.  V )  ->  A  e.  _V )

Proof of Theorem soex
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . 3  |-  ( ( ( R  Or  A  /\  R  e.  V
)  /\  A  =  (/) )  ->  A  =  (/) )
2 0ex 4790 . . 3  |-  (/)  e.  _V
31, 2syl6eqel 2709 . 2  |-  ( ( ( R  Or  A  /\  R  e.  V
)  /\  A  =  (/) )  ->  A  e.  _V )
4 n0 3931 . . 3  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
5 snex 4908 . . . . . . . . 9  |-  { x }  e.  _V
6 dmexg 7097 . . . . . . . . . 10  |-  ( R  e.  V  ->  dom  R  e.  _V )
7 rnexg 7098 . . . . . . . . . 10  |-  ( R  e.  V  ->  ran  R  e.  _V )
8 unexg 6959 . . . . . . . . . 10  |-  ( ( dom  R  e.  _V  /\ 
ran  R  e.  _V )  ->  ( dom  R  u.  ran  R )  e. 
_V )
96, 7, 8syl2anc 693 . . . . . . . . 9  |-  ( R  e.  V  ->  ( dom  R  u.  ran  R
)  e.  _V )
10 unexg 6959 . . . . . . . . 9  |-  ( ( { x }  e.  _V  /\  ( dom  R  u.  ran  R )  e. 
_V )  ->  ( { x }  u.  ( dom  R  u.  ran  R ) )  e.  _V )
115, 9, 10sylancr 695 . . . . . . . 8  |-  ( R  e.  V  ->  ( { x }  u.  ( dom  R  u.  ran  R ) )  e.  _V )
1211ad2antlr 763 . . . . . . 7  |-  ( ( ( R  Or  A  /\  R  e.  V
)  /\  x  e.  A )  ->  ( { x }  u.  ( dom  R  u.  ran  R ) )  e.  _V )
13 sossfld 5580 . . . . . . . . 9  |-  ( ( R  Or  A  /\  x  e.  A )  ->  ( A  \  {
x } )  C_  ( dom  R  u.  ran  R ) )
1413adantlr 751 . . . . . . . 8  |-  ( ( ( R  Or  A  /\  R  e.  V
)  /\  x  e.  A )  ->  ( A  \  { x }
)  C_  ( dom  R  u.  ran  R ) )
15 ssundif 4052 . . . . . . . 8  |-  ( A 
C_  ( { x }  u.  ( dom  R  u.  ran  R ) )  <->  ( A  \  { x } ) 
C_  ( dom  R  u.  ran  R ) )
1614, 15sylibr 224 . . . . . . 7  |-  ( ( ( R  Or  A  /\  R  e.  V
)  /\  x  e.  A )  ->  A  C_  ( { x }  u.  ( dom  R  u.  ran  R ) ) )
1712, 16ssexd 4805 . . . . . 6  |-  ( ( ( R  Or  A  /\  R  e.  V
)  /\  x  e.  A )  ->  A  e.  _V )
1817ex 450 . . . . 5  |-  ( ( R  Or  A  /\  R  e.  V )  ->  ( x  e.  A  ->  A  e.  _V )
)
1918exlimdv 1861 . . . 4  |-  ( ( R  Or  A  /\  R  e.  V )  ->  ( E. x  x  e.  A  ->  A  e.  _V ) )
2019imp 445 . . 3  |-  ( ( ( R  Or  A  /\  R  e.  V
)  /\  E. x  x  e.  A )  ->  A  e.  _V )
214, 20sylan2b 492 . 2  |-  ( ( ( R  Or  A  /\  R  e.  V
)  /\  A  =/=  (/) )  ->  A  e.  _V )
223, 21pm2.61dane 2881 1  |-  ( ( R  Or  A  /\  R  e.  V )  ->  A  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177    Or wor 5034   dom cdm 5114   ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-po 5035  df-so 5036  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  ween  8858  zorn2lem1  9318  zorn2lem4  9321
  Copyright terms: Public domain W3C validator