| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soex | Structured version Visualization version Unicode version | ||
| Description: If the relation in a strict order is a set, then the base field is also a set. (Contributed by Mario Carneiro, 27-Apr-2015.) |
| Ref | Expression |
|---|---|
| soex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 477 |
. . 3
| |
| 2 | 0ex 4790 |
. . 3
| |
| 3 | 1, 2 | syl6eqel 2709 |
. 2
|
| 4 | n0 3931 |
. . 3
| |
| 5 | snex 4908 |
. . . . . . . . 9
| |
| 6 | dmexg 7097 |
. . . . . . . . . 10
| |
| 7 | rnexg 7098 |
. . . . . . . . . 10
| |
| 8 | unexg 6959 |
. . . . . . . . . 10
| |
| 9 | 6, 7, 8 | syl2anc 693 |
. . . . . . . . 9
|
| 10 | unexg 6959 |
. . . . . . . . 9
| |
| 11 | 5, 9, 10 | sylancr 695 |
. . . . . . . 8
|
| 12 | 11 | ad2antlr 763 |
. . . . . . 7
|
| 13 | sossfld 5580 |
. . . . . . . . 9
| |
| 14 | 13 | adantlr 751 |
. . . . . . . 8
|
| 15 | ssundif 4052 |
. . . . . . . 8
| |
| 16 | 14, 15 | sylibr 224 |
. . . . . . 7
|
| 17 | 12, 16 | ssexd 4805 |
. . . . . 6
|
| 18 | 17 | ex 450 |
. . . . 5
|
| 19 | 18 | exlimdv 1861 |
. . . 4
|
| 20 | 19 | imp 445 |
. . 3
|
| 21 | 4, 20 | sylan2b 492 |
. 2
|
| 22 | 3, 21 | pm2.61dane 2881 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-po 5035 df-so 5036 df-cnv 5122 df-dm 5124 df-rn 5125 |
| This theorem is referenced by: ween 8858 zorn2lem1 9318 zorn2lem4 9321 |
| Copyright terms: Public domain | W3C validator |