MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcomex Structured version   Visualization version   GIF version

Theorem dcomex 9269
Description: The Axiom of Dependent Choice implies Infinity, the way we have stated it. Thus, we have Inf+AC implies DC and DC implies Inf, but AC does not imply Inf. (Contributed by Mario Carneiro, 25-Jan-2013.)
Assertion
Ref Expression
dcomex ω ∈ V

Proof of Theorem dcomex
Dummy variables 𝑡 𝑠 𝑥 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 7575 . . . . . . 7 1𝑜 ≠ ∅
2 df-br 4654 . . . . . . . 8 ((𝑓𝑛){⟨1𝑜, 1𝑜⟩} (𝑓‘suc 𝑛) ↔ ⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ ∈ {⟨1𝑜, 1𝑜⟩})
3 elsni 4194 . . . . . . . . 9 (⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ ∈ {⟨1𝑜, 1𝑜⟩} → ⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ = ⟨1𝑜, 1𝑜⟩)
4 fvex 6201 . . . . . . . . . 10 (𝑓𝑛) ∈ V
5 fvex 6201 . . . . . . . . . 10 (𝑓‘suc 𝑛) ∈ V
64, 5opth1 4944 . . . . . . . . 9 (⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ = ⟨1𝑜, 1𝑜⟩ → (𝑓𝑛) = 1𝑜)
73, 6syl 17 . . . . . . . 8 (⟨(𝑓𝑛), (𝑓‘suc 𝑛)⟩ ∈ {⟨1𝑜, 1𝑜⟩} → (𝑓𝑛) = 1𝑜)
82, 7sylbi 207 . . . . . . 7 ((𝑓𝑛){⟨1𝑜, 1𝑜⟩} (𝑓‘suc 𝑛) → (𝑓𝑛) = 1𝑜)
9 tz6.12i 6214 . . . . . . 7 (1𝑜 ≠ ∅ → ((𝑓𝑛) = 1𝑜𝑛𝑓1𝑜))
101, 8, 9mpsyl 68 . . . . . 6 ((𝑓𝑛){⟨1𝑜, 1𝑜⟩} (𝑓‘suc 𝑛) → 𝑛𝑓1𝑜)
11 vex 3203 . . . . . . 7 𝑛 ∈ V
12 1on 7567 . . . . . . . 8 1𝑜 ∈ On
1312elexi 3213 . . . . . . 7 1𝑜 ∈ V
1411, 13breldm 5329 . . . . . 6 (𝑛𝑓1𝑜𝑛 ∈ dom 𝑓)
1510, 14syl 17 . . . . 5 ((𝑓𝑛){⟨1𝑜, 1𝑜⟩} (𝑓‘suc 𝑛) → 𝑛 ∈ dom 𝑓)
1615ralimi 2952 . . . 4 (∀𝑛 ∈ ω (𝑓𝑛){⟨1𝑜, 1𝑜⟩} (𝑓‘suc 𝑛) → ∀𝑛 ∈ ω 𝑛 ∈ dom 𝑓)
17 dfss3 3592 . . . 4 (ω ⊆ dom 𝑓 ↔ ∀𝑛 ∈ ω 𝑛 ∈ dom 𝑓)
1816, 17sylibr 224 . . 3 (∀𝑛 ∈ ω (𝑓𝑛){⟨1𝑜, 1𝑜⟩} (𝑓‘suc 𝑛) → ω ⊆ dom 𝑓)
19 vex 3203 . . . . 5 𝑓 ∈ V
2019dmex 7099 . . . 4 dom 𝑓 ∈ V
2120ssex 4802 . . 3 (ω ⊆ dom 𝑓 → ω ∈ V)
2218, 21syl 17 . 2 (∀𝑛 ∈ ω (𝑓𝑛){⟨1𝑜, 1𝑜⟩} (𝑓‘suc 𝑛) → ω ∈ V)
23 snex 4908 . . 3 {⟨1𝑜, 1𝑜⟩} ∈ V
2413, 13fvsn 6446 . . . . . . . 8 ({⟨1𝑜, 1𝑜⟩}‘1𝑜) = 1𝑜
2513, 13funsn 5939 . . . . . . . . 9 Fun {⟨1𝑜, 1𝑜⟩}
2613snid 4208 . . . . . . . . . 10 1𝑜 ∈ {1𝑜}
2713dmsnop 5609 . . . . . . . . . 10 dom {⟨1𝑜, 1𝑜⟩} = {1𝑜}
2826, 27eleqtrri 2700 . . . . . . . . 9 1𝑜 ∈ dom {⟨1𝑜, 1𝑜⟩}
29 funbrfvb 6238 . . . . . . . . 9 ((Fun {⟨1𝑜, 1𝑜⟩} ∧ 1𝑜 ∈ dom {⟨1𝑜, 1𝑜⟩}) → (({⟨1𝑜, 1𝑜⟩}‘1𝑜) = 1𝑜 ↔ 1𝑜{⟨1𝑜, 1𝑜⟩}1𝑜))
3025, 28, 29mp2an 708 . . . . . . . 8 (({⟨1𝑜, 1𝑜⟩}‘1𝑜) = 1𝑜 ↔ 1𝑜{⟨1𝑜, 1𝑜⟩}1𝑜)
3124, 30mpbi 220 . . . . . . 7 1𝑜{⟨1𝑜, 1𝑜⟩}1𝑜
32 breq12 4658 . . . . . . . 8 ((𝑠 = 1𝑜𝑡 = 1𝑜) → (𝑠{⟨1𝑜, 1𝑜⟩}𝑡 ↔ 1𝑜{⟨1𝑜, 1𝑜⟩}1𝑜))
3313, 13, 32spc2ev 3301 . . . . . . 7 (1𝑜{⟨1𝑜, 1𝑜⟩}1𝑜 → ∃𝑠𝑡 𝑠{⟨1𝑜, 1𝑜⟩}𝑡)
3431, 33ax-mp 5 . . . . . 6 𝑠𝑡 𝑠{⟨1𝑜, 1𝑜⟩}𝑡
35 breq 4655 . . . . . . 7 (𝑥 = {⟨1𝑜, 1𝑜⟩} → (𝑠𝑥𝑡𝑠{⟨1𝑜, 1𝑜⟩}𝑡))
36352exbidv 1852 . . . . . 6 (𝑥 = {⟨1𝑜, 1𝑜⟩} → (∃𝑠𝑡 𝑠𝑥𝑡 ↔ ∃𝑠𝑡 𝑠{⟨1𝑜, 1𝑜⟩}𝑡))
3734, 36mpbiri 248 . . . . 5 (𝑥 = {⟨1𝑜, 1𝑜⟩} → ∃𝑠𝑡 𝑠𝑥𝑡)
38 ssid 3624 . . . . . . 7 {1𝑜} ⊆ {1𝑜}
3913rnsnop 5616 . . . . . . 7 ran {⟨1𝑜, 1𝑜⟩} = {1𝑜}
4038, 39, 273sstr4i 3644 . . . . . 6 ran {⟨1𝑜, 1𝑜⟩} ⊆ dom {⟨1𝑜, 1𝑜⟩}
41 rneq 5351 . . . . . . 7 (𝑥 = {⟨1𝑜, 1𝑜⟩} → ran 𝑥 = ran {⟨1𝑜, 1𝑜⟩})
42 dmeq 5324 . . . . . . 7 (𝑥 = {⟨1𝑜, 1𝑜⟩} → dom 𝑥 = dom {⟨1𝑜, 1𝑜⟩})
4341, 42sseq12d 3634 . . . . . 6 (𝑥 = {⟨1𝑜, 1𝑜⟩} → (ran 𝑥 ⊆ dom 𝑥 ↔ ran {⟨1𝑜, 1𝑜⟩} ⊆ dom {⟨1𝑜, 1𝑜⟩}))
4440, 43mpbiri 248 . . . . 5 (𝑥 = {⟨1𝑜, 1𝑜⟩} → ran 𝑥 ⊆ dom 𝑥)
45 pm5.5 351 . . . . 5 ((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → (((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)) ↔ ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
4637, 44, 45syl2anc 693 . . . 4 (𝑥 = {⟨1𝑜, 1𝑜⟩} → (((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)) ↔ ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)))
47 breq 4655 . . . . . 6 (𝑥 = {⟨1𝑜, 1𝑜⟩} → ((𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ (𝑓𝑛){⟨1𝑜, 1𝑜⟩} (𝑓‘suc 𝑛)))
4847ralbidv 2986 . . . . 5 (𝑥 = {⟨1𝑜, 1𝑜⟩} → (∀𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ ∀𝑛 ∈ ω (𝑓𝑛){⟨1𝑜, 1𝑜⟩} (𝑓‘suc 𝑛)))
4948exbidv 1850 . . . 4 (𝑥 = {⟨1𝑜, 1𝑜⟩} → (∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛) ↔ ∃𝑓𝑛 ∈ ω (𝑓𝑛){⟨1𝑜, 1𝑜⟩} (𝑓‘suc 𝑛)))
5046, 49bitrd 268 . . 3 (𝑥 = {⟨1𝑜, 1𝑜⟩} → (((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛)) ↔ ∃𝑓𝑛 ∈ ω (𝑓𝑛){⟨1𝑜, 1𝑜⟩} (𝑓‘suc 𝑛)))
51 ax-dc 9268 . . 3 ((∃𝑠𝑡 𝑠𝑥𝑡 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
5223, 50, 51vtocl 3259 . 2 𝑓𝑛 ∈ ω (𝑓𝑛){⟨1𝑜, 1𝑜⟩} (𝑓‘suc 𝑛)
5322, 52exlimiiv 1859 1 ω ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  Vcvv 3200  wss 3574  c0 3915  {csn 4177  cop 4183   class class class wbr 4653  dom cdm 5114  ran crn 5115  Oncon0 5723  suc csuc 5725  Fun wfun 5882  cfv 5888  ωcom 7065  1𝑜c1o 7553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-dc 9268
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-1o 7560
This theorem is referenced by:  axdc2lem  9270  axdc3lem  9272  axdc4lem  9277  axcclem  9279
  Copyright terms: Public domain W3C validator