MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfzunsnext Structured version   Visualization version   GIF version

Theorem ssfzunsnext 12386
Description: A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 13-Nov-2021.)
Assertion
Ref Expression
ssfzunsnext ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))

Proof of Theorem ssfzunsnext
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . 3 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → 𝑆 ⊆ (𝑀...𝑁))
2 simp3 1063 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℤ)
3 simp1 1061 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑀 ∈ ℤ)
42, 3ifcld 4131 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → if(𝐼𝑀, 𝐼, 𝑀) ∈ ℤ)
54adantr 481 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑀, 𝐼, 𝑀) ∈ ℤ)
6 elfzelz 12342 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ)
76adantl 482 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ)
84zred 11482 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → if(𝐼𝑀, 𝐼, 𝑀) ∈ ℝ)
98adantr 481 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑀, 𝐼, 𝑀) ∈ ℝ)
10 zre 11381 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
11103ad2ant1 1082 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑀 ∈ ℝ)
1211adantr 481 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ)
136zred 11482 . . . . . . . . . 10 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℝ)
1413adantl 482 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℝ)
15 zre 11381 . . . . . . . . . . . . . 14 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
1610, 15anim12i 590 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝐼 ∈ ℝ))
1716ancomd 467 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ))
18173adant2 1080 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ))
1918adantr 481 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ))
20 min2 12021 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ) → if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝑀)
2119, 20syl 17 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝑀)
22 elfzle1 12344 . . . . . . . . . 10 (𝑘 ∈ (𝑀...𝑁) → 𝑀𝑘)
2322adantl 482 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑀𝑘)
249, 12, 14, 21, 23letrd 10194 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝑘)
25 eluz2 11693 . . . . . . . 8 (𝑘 ∈ (ℤ‘if(𝐼𝑀, 𝐼, 𝑀)) ↔ (if(𝐼𝑀, 𝐼, 𝑀) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝑘))
265, 7, 24, 25syl3anbrc 1246 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (ℤ‘if(𝐼𝑀, 𝐼, 𝑀)))
27 simp2 1062 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℤ)
2827, 2ifcld 4131 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → if(𝐼𝑁, 𝑁, 𝐼) ∈ ℤ)
2928adantr 481 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑁, 𝑁, 𝐼) ∈ ℤ)
30 zre 11381 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
31303ad2ant2 1083 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℝ)
3231adantr 481 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℝ)
3328zred 11482 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → if(𝐼𝑁, 𝑁, 𝐼) ∈ ℝ)
3433adantr 481 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑁, 𝑁, 𝐼) ∈ ℝ)
35 elfzle2 12345 . . . . . . . . . 10 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑁)
3635adantl 482 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘𝑁)
3730, 15anim12i 590 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝐼 ∈ ℝ))
38373adant1 1079 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝐼 ∈ ℝ))
3938ancomd 467 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ))
40 max2 12018 . . . . . . . . . . 11 ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝐼𝑁, 𝑁, 𝐼))
4139, 40syl 17 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑁 ≤ if(𝐼𝑁, 𝑁, 𝐼))
4241adantr 481 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑁 ≤ if(𝐼𝑁, 𝑁, 𝐼))
4314, 32, 34, 36, 42letrd 10194 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ≤ if(𝐼𝑁, 𝑁, 𝐼))
44 eluz2 11693 . . . . . . . 8 (if(𝐼𝑁, 𝑁, 𝐼) ∈ (ℤ𝑘) ↔ (𝑘 ∈ ℤ ∧ if(𝐼𝑁, 𝑁, 𝐼) ∈ ℤ ∧ 𝑘 ≤ if(𝐼𝑁, 𝑁, 𝐼)))
457, 29, 43, 44syl3anbrc 1246 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑁, 𝑁, 𝐼) ∈ (ℤ𝑘))
46 elfzuzb 12336 . . . . . . 7 (𝑘 ∈ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)) ↔ (𝑘 ∈ (ℤ‘if(𝐼𝑀, 𝐼, 𝑀)) ∧ if(𝐼𝑁, 𝑁, 𝐼) ∈ (ℤ𝑘)))
4726, 45, 46sylanbrc 698 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
4847ex 450 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼))))
4948ssrdv 3609 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑀...𝑁) ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
5049adantl 482 . . 3 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑀...𝑁) ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
511, 50sstrd 3613 . 2 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → 𝑆 ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
524adantl 482 . . . . 5 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → if(𝐼𝑀, 𝐼, 𝑀) ∈ ℤ)
5328adantl 482 . . . . 5 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → if(𝐼𝑁, 𝑁, 𝐼) ∈ ℤ)
542adantl 482 . . . . 5 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → 𝐼 ∈ ℤ)
5552, 53, 543jca 1242 . . . 4 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (if(𝐼𝑀, 𝐼, 𝑀) ∈ ℤ ∧ if(𝐼𝑁, 𝑁, 𝐼) ∈ ℤ ∧ 𝐼 ∈ ℤ))
56163adant2 1080 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝐼 ∈ ℝ))
5756adantl 482 . . . . . . 7 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑀 ∈ ℝ ∧ 𝐼 ∈ ℝ))
5857ancomd 467 . . . . . 6 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ))
59 min1 12020 . . . . . 6 ((𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ) → if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝐼)
6058, 59syl 17 . . . . 5 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝐼)
6138adantl 482 . . . . . . 7 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑁 ∈ ℝ ∧ 𝐼 ∈ ℝ))
6261ancomd 467 . . . . . 6 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ))
63 max1 12016 . . . . . 6 ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝐼 ≤ if(𝐼𝑁, 𝑁, 𝐼))
6462, 63syl 17 . . . . 5 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → 𝐼 ≤ if(𝐼𝑁, 𝑁, 𝐼))
6560, 64jca 554 . . . 4 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝐼𝐼 ≤ if(𝐼𝑁, 𝑁, 𝐼)))
66 elfz2 12333 . . . 4 (𝐼 ∈ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)) ↔ ((if(𝐼𝑀, 𝐼, 𝑀) ∈ ℤ ∧ if(𝐼𝑁, 𝑁, 𝐼) ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝐼𝐼 ≤ if(𝐼𝑁, 𝑁, 𝐼))))
6755, 65, 66sylanbrc 698 . . 3 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → 𝐼 ∈ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
6867snssd 4340 . 2 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → {𝐼} ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
6951, 68unssd 3789 1 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wcel 1990  cun 3572  wss 3574  ifcif 4086  {csn 4177   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  cle 10075  cz 11377  cuz 11687  ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  ssfzunsn  12387  setsstruct2  15896
  Copyright terms: Public domain W3C validator