MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trufil Structured version   Visualization version   GIF version

Theorem trufil 21714
Description: Conditions for the trace of an ultrafilter 𝐿 to be an ultrafilter. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
trufil ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (UFil‘𝐴) ↔ 𝐴𝐿))

Proof of Theorem trufil
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ufilfil 21708 . . . 4 ((𝐿t 𝐴) ∈ (UFil‘𝐴) → (𝐿t 𝐴) ∈ (Fil‘𝐴))
2 ufilfil 21708 . . . . 5 (𝐿 ∈ (UFil‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
3 trfil3 21692 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
42, 3sylan 488 . . . 4 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
51, 4syl5ib 234 . . 3 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (UFil‘𝐴) → ¬ (𝑌𝐴) ∈ 𝐿))
64biimprd 238 . . . . 5 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ (𝑌𝐴) ∈ 𝐿 → (𝐿t 𝐴) ∈ (Fil‘𝐴)))
7 elpwi 4168 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
8 simpll 790 . . . . . . . . 9 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → 𝐿 ∈ (UFil‘𝑌))
9 simpr 477 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → 𝑥𝐴)
10 simplr 792 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → 𝐴𝑌)
119, 10sstrd 3613 . . . . . . . . 9 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → 𝑥𝑌)
12 ufilss 21709 . . . . . . . . 9 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝑥𝑌) → (𝑥𝐿 ∨ (𝑌𝑥) ∈ 𝐿))
138, 11, 12syl2anc 693 . . . . . . . 8 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥𝐿 ∨ (𝑌𝑥) ∈ 𝐿))
14 id 22 . . . . . . . . . . . . 13 (𝐴𝑌𝐴𝑌)
15 elfvdm 6220 . . . . . . . . . . . . 13 (𝐿 ∈ (UFil‘𝑌) → 𝑌 ∈ dom UFil)
16 ssexg 4804 . . . . . . . . . . . . 13 ((𝐴𝑌𝑌 ∈ dom UFil) → 𝐴 ∈ V)
1714, 15, 16syl2anr 495 . . . . . . . . . . . 12 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → 𝐴 ∈ V)
18 elrestr 16089 . . . . . . . . . . . . 13 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴 ∈ V ∧ 𝑥𝐿) → (𝑥𝐴) ∈ (𝐿t 𝐴))
19183expia 1267 . . . . . . . . . . . 12 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴 ∈ V) → (𝑥𝐿 → (𝑥𝐴) ∈ (𝐿t 𝐴)))
2017, 19syldan 487 . . . . . . . . . . 11 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (𝑥𝐿 → (𝑥𝐴) ∈ (𝐿t 𝐴)))
2120adantr 481 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥𝐿 → (𝑥𝐴) ∈ (𝐿t 𝐴)))
22 df-ss 3588 . . . . . . . . . . . 12 (𝑥𝐴 ↔ (𝑥𝐴) = 𝑥)
239, 22sylib 208 . . . . . . . . . . 11 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥𝐴) = 𝑥)
2423eleq1d 2686 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → ((𝑥𝐴) ∈ (𝐿t 𝐴) ↔ 𝑥 ∈ (𝐿t 𝐴)))
2521, 24sylibd 229 . . . . . . . . 9 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥𝐿𝑥 ∈ (𝐿t 𝐴)))
26 indif1 3871 . . . . . . . . . . . 12 ((𝑌𝑥) ∩ 𝐴) = ((𝑌𝐴) ∖ 𝑥)
27 simplr 792 . . . . . . . . . . . . . 14 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → 𝐴𝑌)
28 sseqin2 3817 . . . . . . . . . . . . . 14 (𝐴𝑌 ↔ (𝑌𝐴) = 𝐴)
2927, 28sylib 208 . . . . . . . . . . . . 13 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → (𝑌𝐴) = 𝐴)
3029difeq1d 3727 . . . . . . . . . . . 12 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → ((𝑌𝐴) ∖ 𝑥) = (𝐴𝑥))
3126, 30syl5eq 2668 . . . . . . . . . . 11 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → ((𝑌𝑥) ∩ 𝐴) = (𝐴𝑥))
32 simpll 790 . . . . . . . . . . . 12 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → 𝐿 ∈ (UFil‘𝑌))
3317adantr 481 . . . . . . . . . . . 12 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → 𝐴 ∈ V)
34 simprr 796 . . . . . . . . . . . 12 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → (𝑌𝑥) ∈ 𝐿)
35 elrestr 16089 . . . . . . . . . . . 12 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴 ∈ V ∧ (𝑌𝑥) ∈ 𝐿) → ((𝑌𝑥) ∩ 𝐴) ∈ (𝐿t 𝐴))
3632, 33, 34, 35syl3anc 1326 . . . . . . . . . . 11 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → ((𝑌𝑥) ∩ 𝐴) ∈ (𝐿t 𝐴))
3731, 36eqeltrrd 2702 . . . . . . . . . 10 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑌𝑥) ∈ 𝐿)) → (𝐴𝑥) ∈ (𝐿t 𝐴))
3837expr 643 . . . . . . . . 9 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → ((𝑌𝑥) ∈ 𝐿 → (𝐴𝑥) ∈ (𝐿t 𝐴)))
3925, 38orim12d 883 . . . . . . . 8 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → ((𝑥𝐿 ∨ (𝑌𝑥) ∈ 𝐿) → (𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴))))
4013, 39mpd 15 . . . . . . 7 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴)))
417, 40sylan2 491 . . . . . 6 (((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴)))
4241ralrimiva 2966 . . . . 5 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴)))
436, 42jctird 567 . . . 4 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ (𝑌𝐴) ∈ 𝐿 → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴)))))
44 isufil 21707 . . . 4 ((𝐿t 𝐴) ∈ (UFil‘𝐴) ↔ ((𝐿t 𝐴) ∈ (Fil‘𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ (𝐿t 𝐴) ∨ (𝐴𝑥) ∈ (𝐿t 𝐴))))
4543, 44syl6ibr 242 . . 3 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ (𝑌𝐴) ∈ 𝐿 → (𝐿t 𝐴) ∈ (UFil‘𝐴)))
465, 45impbid 202 . 2 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (UFil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
47 ufilb 21710 . . 3 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ 𝐴𝐿 ↔ (𝑌𝐴) ∈ 𝐿))
4847con1bid 345 . 2 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → (¬ (𝑌𝐴) ∈ 𝐿𝐴𝐿))
4946, 48bitrd 268 1 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (UFil‘𝐴) ↔ 𝐴𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cdif 3571  cin 3573  wss 3574  𝒫 cpw 4158  dom cdm 5114  cfv 5888  (class class class)co 6650  t crest 16081  Filcfil 21649  UFilcufil 21703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-rest 16083  df-fbas 19743  df-fg 19744  df-fil 21650  df-ufil 21705
This theorem is referenced by:  ssufl  21722
  Copyright terms: Public domain W3C validator