MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submaval Structured version   Visualization version   GIF version

Theorem submaval 20387
Description: Third substitution for a submatrix. (Contributed by AV, 28-Dec-2018.)
Hypotheses
Ref Expression
submafval.a 𝐴 = (𝑁 Mat 𝑅)
submafval.q 𝑄 = (𝑁 subMat 𝑅)
submafval.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
submaval ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝐾(𝑄𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝑖,𝑀,𝑗   𝑖,𝐾,𝑗   𝑖,𝐿,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑄(𝑖,𝑗)

Proof of Theorem submaval
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submafval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 submafval.q . . . 4 𝑄 = (𝑁 subMat 𝑅)
3 submafval.b . . . 4 𝐵 = (Base‘𝐴)
41, 2, 3submaval0 20386 . . 3 (𝑀𝐵 → (𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗))))
543ad2ant1 1082 . 2 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗))))
6 simp2 1062 . . 3 ((𝑀𝐵𝐾𝑁𝐿𝑁) → 𝐾𝑁)
7 simpl3 1066 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑘 = 𝐾) → 𝐿𝑁)
81, 3matrcl 20218 . . . . . . . . 9 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98simpld 475 . . . . . . . 8 (𝑀𝐵𝑁 ∈ Fin)
10 diffi 8192 . . . . . . . 8 (𝑁 ∈ Fin → (𝑁 ∖ {𝑘}) ∈ Fin)
119, 10syl 17 . . . . . . 7 (𝑀𝐵 → (𝑁 ∖ {𝑘}) ∈ Fin)
12 diffi 8192 . . . . . . . 8 (𝑁 ∈ Fin → (𝑁 ∖ {𝑙}) ∈ Fin)
139, 12syl 17 . . . . . . 7 (𝑀𝐵 → (𝑁 ∖ {𝑙}) ∈ Fin)
1411, 13jca 554 . . . . . 6 (𝑀𝐵 → ((𝑁 ∖ {𝑘}) ∈ Fin ∧ (𝑁 ∖ {𝑙}) ∈ Fin))
15143ad2ant1 1082 . . . . 5 ((𝑀𝐵𝐾𝑁𝐿𝑁) → ((𝑁 ∖ {𝑘}) ∈ Fin ∧ (𝑁 ∖ {𝑙}) ∈ Fin))
1615adantr 481 . . . 4 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → ((𝑁 ∖ {𝑘}) ∈ Fin ∧ (𝑁 ∖ {𝑙}) ∈ Fin))
17 mpt2exga 7246 . . . 4 (((𝑁 ∖ {𝑘}) ∈ Fin ∧ (𝑁 ∖ {𝑙}) ∈ Fin) → (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)) ∈ V)
1816, 17syl 17 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)) ∈ V)
19 sneq 4187 . . . . . . 7 (𝑘 = 𝐾 → {𝑘} = {𝐾})
2019difeq2d 3728 . . . . . 6 (𝑘 = 𝐾 → (𝑁 ∖ {𝑘}) = (𝑁 ∖ {𝐾}))
2120adantr 481 . . . . 5 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑁 ∖ {𝑘}) = (𝑁 ∖ {𝐾}))
22 sneq 4187 . . . . . . 7 (𝑙 = 𝐿 → {𝑙} = {𝐿})
2322difeq2d 3728 . . . . . 6 (𝑙 = 𝐿 → (𝑁 ∖ {𝑙}) = (𝑁 ∖ {𝐿}))
2423adantl 482 . . . . 5 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑁 ∖ {𝑙}) = (𝑁 ∖ {𝐿}))
25 eqidd 2623 . . . . 5 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑖𝑀𝑗) = (𝑖𝑀𝑗))
2621, 24, 25mpt2eq123dv 6717 . . . 4 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
2726adantl 482 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
286, 7, 18, 27ovmpt2dv2 6794 . 2 ((𝑀𝐵𝐾𝑁𝐿𝑁) → ((𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗))) → (𝐾(𝑄𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗))))
295, 28mpd 15 1 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝐾(𝑄𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  {csn 4177  cfv 5888  (class class class)co 6650  cmpt2 6652  Fincfn 7955  Basecbs 15857   Mat cmat 20213   subMat csubma 20382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-fin 7959  df-slot 15861  df-base 15863  df-mat 20214  df-subma 20383
This theorem is referenced by:  submaeval  20388  1marepvsma1  20389  smadiadet  20476  submat1n  29871  submatres  29872  madjusmdetlem1  29893
  Copyright terms: Public domain W3C validator