![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppval | Structured version Visualization version GIF version |
Description: The value of the operation constructing the support of a function. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
suppval | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-supp 7296 | . . 3 ⊢ supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})) |
3 | dmeq 5324 | . . . . 5 ⊢ (𝑥 = 𝑋 → dom 𝑥 = dom 𝑋) | |
4 | 3 | adantr 481 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → dom 𝑥 = dom 𝑋) |
5 | imaeq1 5461 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖})) | |
6 | 5 | adantr 481 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖})) |
7 | sneq 4187 | . . . . . 6 ⊢ (𝑧 = 𝑍 → {𝑧} = {𝑍}) | |
8 | 7 | adantl 482 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → {𝑧} = {𝑍}) |
9 | 6, 8 | neeq12d 2855 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → ((𝑥 “ {𝑖}) ≠ {𝑧} ↔ (𝑋 “ {𝑖}) ≠ {𝑍})) |
10 | 4, 9 | rabeqbidv 3195 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑧 = 𝑍) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
11 | 10 | adantl 482 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝑥 = 𝑋 ∧ 𝑧 = 𝑍)) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
12 | elex 3212 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
13 | 12 | adantr 481 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑋 ∈ V) |
14 | elex 3212 | . . 3 ⊢ (𝑍 ∈ 𝑊 → 𝑍 ∈ V) | |
15 | 14 | adantl 482 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑍 ∈ V) |
16 | dmexg 7097 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → dom 𝑋 ∈ V) | |
17 | 16 | adantr 481 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → dom 𝑋 ∈ V) |
18 | rabexg 4812 | . . 3 ⊢ (dom 𝑋 ∈ V → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V) | |
19 | 17, 18 | syl 17 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V) |
20 | 2, 11, 13, 15, 19 | ovmpt2d 6788 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 {crab 2916 Vcvv 3200 {csn 4177 dom cdm 5114 “ cima 5117 (class class class)co 6650 ↦ cmpt2 6652 supp csupp 7295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-supp 7296 |
This theorem is referenced by: suppvalbr 7299 supp0 7300 suppval1 7301 suppssdm 7308 suppsnop 7309 ressuppss 7314 ressuppssdif 7316 |
Copyright terms: Public domain | W3C validator |