MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppvalbr Structured version   Visualization version   GIF version

Theorem suppvalbr 7299
Description: The value of the operation constructing the support of a function expressed by binary relations. (Contributed by AV, 7-Apr-2019.)
Assertion
Ref Expression
suppvalbr ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem suppvalbr
StepHypRef Expression
1 suppval 7297 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}})
2 df-rab 2921 . . . 4 {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∣ (𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍})}
3 vex 3203 . . . . . . 7 𝑥 ∈ V
43eldm 5321 . . . . . 6 (𝑥 ∈ dom 𝑅 ↔ ∃𝑦 𝑥𝑅𝑦)
5 df-sn 4178 . . . . . . . 8 {𝑍} = {𝑦𝑦 = 𝑍}
65neeq2i 2859 . . . . . . 7 ({𝑦𝑥𝑅𝑦} ≠ {𝑍} ↔ {𝑦𝑥𝑅𝑦} ≠ {𝑦𝑦 = 𝑍})
7 imasng 5487 . . . . . . . . 9 (𝑥 ∈ V → (𝑅 “ {𝑥}) = {𝑦𝑥𝑅𝑦})
83, 7ax-mp 5 . . . . . . . 8 (𝑅 “ {𝑥}) = {𝑦𝑥𝑅𝑦}
98neeq1i 2858 . . . . . . 7 ((𝑅 “ {𝑥}) ≠ {𝑍} ↔ {𝑦𝑥𝑅𝑦} ≠ {𝑍})
10 nabbi 2896 . . . . . . 7 (∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍) ↔ {𝑦𝑥𝑅𝑦} ≠ {𝑦𝑦 = 𝑍})
116, 9, 103bitr4i 292 . . . . . 6 ((𝑅 “ {𝑥}) ≠ {𝑍} ↔ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))
124, 11anbi12i 733 . . . . 5 ((𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍}) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)))
1312abbii 2739 . . . 4 {𝑥 ∣ (𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍})} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))}
142, 13eqtri 2644 . . 3 {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))}
1514a1i 11 . 2 ((𝑅𝑉𝑍𝑊) → {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))})
16 df-ne 2795 . . . . . . . 8 (𝑦𝑍 ↔ ¬ 𝑦 = 𝑍)
1716bicomi 214 . . . . . . 7 𝑦 = 𝑍𝑦𝑍)
1817bibi2i 327 . . . . . 6 ((𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍) ↔ (𝑥𝑅𝑦𝑦𝑍))
1918exbii 1774 . . . . 5 (∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍) ↔ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
2019anbi2i 730 . . . 4 ((∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
2120abbii 2739 . . 3 {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))}
2221a1i 11 . 2 ((𝑅𝑉𝑍𝑊) → {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
231, 15, 223eqtrd 2660 1 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wne 2794  {crab 2916  Vcvv 3200  {csn 4177   class class class wbr 4653  dom cdm 5114  cima 5117  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  suppimacnvss  7305  suppimacnv  7306
  Copyright terms: Public domain W3C validator