![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppval1 | Structured version Visualization version GIF version |
Description: The value of the operation constructing the support of a function. (Contributed by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
suppval1 | ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋‘𝑖) ≠ 𝑍}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppval 7297 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) | |
2 | 1 | 3adant1 1079 | . 2 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
3 | funfn 5918 | . . . . . . . . 9 ⊢ (Fun 𝑋 ↔ 𝑋 Fn dom 𝑋) | |
4 | 3 | biimpi 206 | . . . . . . . 8 ⊢ (Fun 𝑋 → 𝑋 Fn dom 𝑋) |
5 | 4 | 3ad2ant1 1082 | . . . . . . 7 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑋 Fn dom 𝑋) |
6 | fnsnfv 6258 | . . . . . . 7 ⊢ ((𝑋 Fn dom 𝑋 ∧ 𝑖 ∈ dom 𝑋) → {(𝑋‘𝑖)} = (𝑋 “ {𝑖})) | |
7 | 5, 6 | sylan 488 | . . . . . 6 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → {(𝑋‘𝑖)} = (𝑋 “ {𝑖})) |
8 | 7 | eqcomd 2628 | . . . . 5 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → (𝑋 “ {𝑖}) = {(𝑋‘𝑖)}) |
9 | 8 | neeq1d 2853 | . . . 4 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ {(𝑋‘𝑖)} ≠ {𝑍})) |
10 | fvex 6201 | . . . . . 6 ⊢ (𝑋‘𝑖) ∈ V | |
11 | sneqbg 4374 | . . . . . 6 ⊢ ((𝑋‘𝑖) ∈ V → ({(𝑋‘𝑖)} = {𝑍} ↔ (𝑋‘𝑖) = 𝑍)) | |
12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋‘𝑖)} = {𝑍} ↔ (𝑋‘𝑖) = 𝑍)) |
13 | 12 | necon3bid 2838 | . . . 4 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋‘𝑖)} ≠ {𝑍} ↔ (𝑋‘𝑖) ≠ 𝑍)) |
14 | 9, 13 | bitrd 268 | . . 3 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ (𝑋‘𝑖) ≠ 𝑍)) |
15 | 14 | rabbidva 3188 | . 2 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋‘𝑖) ≠ 𝑍}) |
16 | 2, 15 | eqtrd 2656 | 1 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋‘𝑖) ≠ 𝑍}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 {crab 2916 Vcvv 3200 {csn 4177 dom cdm 5114 “ cima 5117 Fun wfun 5882 Fn wfn 5883 ‘cfv 5888 (class class class)co 6650 supp csupp 7295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-supp 7296 |
This theorem is referenced by: suppvalfn 7302 suppfnss 7320 fnsuppres 7322 domnmsuppn0 42150 rmsuppss 42151 mndpsuppss 42152 scmsuppss 42153 suppdm 42300 |
Copyright terms: Public domain | W3C validator |