MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppsnop Structured version   Visualization version   GIF version

Theorem suppsnop 7309
Description: The support of a singleton of an ordered pair. (Contributed by AV, 12-Apr-2019.)
Hypothesis
Ref Expression
suppsnop.f 𝐹 = {⟨𝑋, 𝑌⟩}
Assertion
Ref Expression
suppsnop ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹 supp 𝑍) = if(𝑌 = 𝑍, ∅, {𝑋}))

Proof of Theorem suppsnop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 f1osng 6177 . . . . . . 7 ((𝑋𝑉𝑌𝑊) → {⟨𝑋, 𝑌⟩}:{𝑋}–1-1-onto→{𝑌})
2 f1of 6137 . . . . . . 7 ({⟨𝑋, 𝑌⟩}:{𝑋}–1-1-onto→{𝑌} → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
31, 2syl 17 . . . . . 6 ((𝑋𝑉𝑌𝑊) → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
433adant3 1081 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
5 suppsnop.f . . . . . 6 𝐹 = {⟨𝑋, 𝑌⟩}
65feq1i 6036 . . . . 5 (𝐹:{𝑋}⟶{𝑌} ↔ {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
74, 6sylibr 224 . . . 4 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝐹:{𝑋}⟶{𝑌})
8 snex 4908 . . . . 5 {𝑋} ∈ V
98a1i 11 . . . 4 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {𝑋} ∈ V)
10 fex 6490 . . . 4 ((𝐹:{𝑋}⟶{𝑌} ∧ {𝑋} ∈ V) → 𝐹 ∈ V)
117, 9, 10syl2anc 693 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝐹 ∈ V)
12 simp3 1063 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝑍𝑈)
13 suppval 7297 . . 3 ((𝐹 ∈ V ∧ 𝑍𝑈) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}})
1411, 12, 13syl2anc 693 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}})
155a1i 11 . . . . . 6 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝐹 = {⟨𝑋, 𝑌⟩})
1615dmeqd 5326 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → dom 𝐹 = dom {⟨𝑋, 𝑌⟩})
17 dmsnopg 5606 . . . . . 6 (𝑌𝑊 → dom {⟨𝑋, 𝑌⟩} = {𝑋})
18173ad2ant2 1083 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → dom {⟨𝑋, 𝑌⟩} = {𝑋})
1916, 18eqtrd 2656 . . . 4 ((𝑋𝑉𝑌𝑊𝑍𝑈) → dom 𝐹 = {𝑋})
20 rabeq 3192 . . . 4 (dom 𝐹 = {𝑋} → {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∈ {𝑋} ∣ (𝐹 “ {𝑥}) ≠ {𝑍}})
2119, 20syl 17 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∈ {𝑋} ∣ (𝐹 “ {𝑥}) ≠ {𝑍}})
22 sneq 4187 . . . . . 6 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2322imaeq2d 5466 . . . . 5 (𝑥 = 𝑋 → (𝐹 “ {𝑥}) = (𝐹 “ {𝑋}))
2423neeq1d 2853 . . . 4 (𝑥 = 𝑋 → ((𝐹 “ {𝑥}) ≠ {𝑍} ↔ (𝐹 “ {𝑋}) ≠ {𝑍}))
2524rabsnif 4258 . . 3 {𝑥 ∈ {𝑋} ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅)
2621, 25syl6eq 2672 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {𝑥 ∈ dom 𝐹 ∣ (𝐹 “ {𝑥}) ≠ {𝑍}} = if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅))
27 fnsng 5938 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → {⟨𝑋, 𝑌⟩} Fn {𝑋})
28273adant3 1081 . . . . . . . 8 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {⟨𝑋, 𝑌⟩} Fn {𝑋})
295eqcomi 2631 . . . . . . . . . 10 {⟨𝑋, 𝑌⟩} = 𝐹
3029a1i 11 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {⟨𝑋, 𝑌⟩} = 𝐹)
3130fneq1d 5981 . . . . . . . 8 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({⟨𝑋, 𝑌⟩} Fn {𝑋} ↔ 𝐹 Fn {𝑋}))
3228, 31mpbid 222 . . . . . . 7 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝐹 Fn {𝑋})
33 snidg 4206 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
34333ad2ant1 1082 . . . . . . 7 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝑋 ∈ {𝑋})
35 fnsnfv 6258 . . . . . . . 8 ((𝐹 Fn {𝑋} ∧ 𝑋 ∈ {𝑋}) → {(𝐹𝑋)} = (𝐹 “ {𝑋}))
3635eqcomd 2628 . . . . . . 7 ((𝐹 Fn {𝑋} ∧ 𝑋 ∈ {𝑋}) → (𝐹 “ {𝑋}) = {(𝐹𝑋)})
3732, 34, 36syl2anc 693 . . . . . 6 ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹 “ {𝑋}) = {(𝐹𝑋)})
3837neeq1d 2853 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ((𝐹 “ {𝑋}) ≠ {𝑍} ↔ {(𝐹𝑋)} ≠ {𝑍}))
395fveq1i 6192 . . . . . . . 8 (𝐹𝑋) = ({⟨𝑋, 𝑌⟩}‘𝑋)
40 fvsng 6447 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → ({⟨𝑋, 𝑌⟩}‘𝑋) = 𝑌)
41403adant3 1081 . . . . . . . 8 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({⟨𝑋, 𝑌⟩}‘𝑋) = 𝑌)
4239, 41syl5eq 2668 . . . . . . 7 ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹𝑋) = 𝑌)
4342sneqd 4189 . . . . . 6 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {(𝐹𝑋)} = {𝑌})
4443neeq1d 2853 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({(𝐹𝑋)} ≠ {𝑍} ↔ {𝑌} ≠ {𝑍}))
45 sneqbg 4374 . . . . . . 7 (𝑌𝑊 → ({𝑌} = {𝑍} ↔ 𝑌 = 𝑍))
46453ad2ant2 1083 . . . . . 6 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({𝑌} = {𝑍} ↔ 𝑌 = 𝑍))
4746necon3abid 2830 . . . . 5 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({𝑌} ≠ {𝑍} ↔ ¬ 𝑌 = 𝑍))
4838, 44, 473bitrd 294 . . . 4 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ((𝐹 “ {𝑋}) ≠ {𝑍} ↔ ¬ 𝑌 = 𝑍))
4948ifbid 4108 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅) = if(¬ 𝑌 = 𝑍, {𝑋}, ∅))
50 ifnot 4133 . . 3 if(¬ 𝑌 = 𝑍, {𝑋}, ∅) = if(𝑌 = 𝑍, ∅, {𝑋})
5149, 50syl6eq 2672 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → if((𝐹 “ {𝑋}) ≠ {𝑍}, {𝑋}, ∅) = if(𝑌 = 𝑍, ∅, {𝑋}))
5214, 26, 513eqtrd 2660 1 ((𝑋𝑉𝑌𝑊𝑍𝑈) → (𝐹 supp 𝑍) = if(𝑌 = 𝑍, ∅, {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  {crab 2916  Vcvv 3200  c0 3915  ifcif 4086  {csn 4177  cop 4183  dom cdm 5114  cima 5117   Fn wfn 5883  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator