MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem2 Structured version   Visualization version   GIF version

Theorem sylow3lem2 18043
Description: Lemma for sylow3 18048, first part. The stabilizer of a given Sylow subgroup 𝐾 in the group action acting on all of 𝐺 is the normalizer NG(K). (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem1.a + = (+g𝐺)
sylow3lem1.d = (-g𝐺)
sylow3lem1.m = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
sylow3lem2.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow3lem2.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
sylow3lem2.n 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
Assertion
Ref Expression
sylow3lem2 (𝜑𝐻 = 𝑁)
Distinct variable groups:   𝑥,𝑢,𝑦,𝑧,   𝑢, ,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑢,𝐾,𝑥,𝑦,𝑧   𝑢,𝑁,𝑧   𝑢,𝑋,𝑥,𝑦,𝑧   𝑢,𝐺,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢, + ,𝑥,𝑦,𝑧   𝑢,𝑃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑢)   𝑁(𝑥,𝑦)

Proof of Theorem sylow3lem2
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3lem2.n . . . . 5 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
2 ssrab2 3687 . . . . 5 {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)} ⊆ 𝑋
31, 2eqsstri 3635 . . . 4 𝑁𝑋
4 sseqin2 3817 . . . 4 (𝑁𝑋 ↔ (𝑋𝑁) = 𝑁)
53, 4mpbi 220 . . 3 (𝑋𝑁) = 𝑁
6 simpr 477 . . . . . . . 8 ((𝜑𝑢𝑋) → 𝑢𝑋)
7 sylow3lem2.k . . . . . . . . 9 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
87adantr 481 . . . . . . . 8 ((𝜑𝑢𝑋) → 𝐾 ∈ (𝑃 pSyl 𝐺))
9 mptexg 6484 . . . . . . . . 9 (𝐾 ∈ (𝑃 pSyl 𝐺) → (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
10 rnexg 7098 . . . . . . . . 9 ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V → ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
118, 9, 103syl 18 . . . . . . . 8 ((𝜑𝑢𝑋) → ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
12 simpr 477 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝐾) → 𝑦 = 𝐾)
13 simpl 473 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝐾) → 𝑥 = 𝑢)
1413oveq1d 6665 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝐾) → (𝑥 + 𝑧) = (𝑢 + 𝑧))
1514, 13oveq12d 6668 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝐾) → ((𝑥 + 𝑧) 𝑥) = ((𝑢 + 𝑧) 𝑢))
1612, 15mpteq12dv 4733 . . . . . . . . . 10 ((𝑥 = 𝑢𝑦 = 𝐾) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
1716rneqd 5353 . . . . . . . . 9 ((𝑥 = 𝑢𝑦 = 𝐾) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
18 sylow3lem1.m . . . . . . . . 9 = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
1917, 18ovmpt2ga 6790 . . . . . . . 8 ((𝑢𝑋𝐾 ∈ (𝑃 pSyl 𝐺) ∧ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
206, 8, 11, 19syl3anc 1326 . . . . . . 7 ((𝜑𝑢𝑋) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
2120adantr 481 . . . . . 6 (((𝜑𝑢𝑋) ∧ 𝑢𝑁) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
22 slwsubg 18025 . . . . . . . . 9 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
237, 22syl 17 . . . . . . . 8 (𝜑𝐾 ∈ (SubGrp‘𝐺))
2423adantr 481 . . . . . . 7 ((𝜑𝑢𝑋) → 𝐾 ∈ (SubGrp‘𝐺))
25 sylow3.x . . . . . . . 8 𝑋 = (Base‘𝐺)
26 sylow3lem1.a . . . . . . . 8 + = (+g𝐺)
27 sylow3lem1.d . . . . . . . 8 = (-g𝐺)
28 eqid 2622 . . . . . . . 8 (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) = (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))
2925, 26, 27, 28, 1conjnmz 17694 . . . . . . 7 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑢𝑁) → 𝐾 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
3024, 29sylan 488 . . . . . 6 (((𝜑𝑢𝑋) ∧ 𝑢𝑁) → 𝐾 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
3121, 30eqtr4d 2659 . . . . 5 (((𝜑𝑢𝑋) ∧ 𝑢𝑁) → (𝑢 𝐾) = 𝐾)
32 simplr 792 . . . . . 6 (((𝜑𝑢𝑋) ∧ (𝑢 𝐾) = 𝐾) → 𝑢𝑋)
33 simprl 794 . . . . . . . . . . 11 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → (𝑢 𝐾) = 𝐾)
3420adantr 481 . . . . . . . . . . 11 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
3533, 34eqtr3d 2658 . . . . . . . . . 10 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → 𝐾 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
3635eleq2d 2687 . . . . . . . . 9 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
37 ovex 6678 . . . . . . . . . . . 12 (𝑢 + 𝑤) ∈ V
38 eqeq1 2626 . . . . . . . . . . . . 13 (𝑣 = (𝑢 + 𝑤) → (𝑣 = ((𝑢 + 𝑧) 𝑢) ↔ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢)))
3938rexbidv 3052 . . . . . . . . . . . 12 (𝑣 = (𝑢 + 𝑤) → (∃𝑧𝐾 𝑣 = ((𝑢 + 𝑧) 𝑢) ↔ ∃𝑧𝐾 (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢)))
4028rnmpt 5371 . . . . . . . . . . . 12 ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) = {𝑣 ∣ ∃𝑧𝐾 𝑣 = ((𝑢 + 𝑧) 𝑢)}
4137, 39, 40elab2 3354 . . . . . . . . . . 11 ((𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ↔ ∃𝑧𝐾 (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))
42 simprr 796 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))
43 sylow3.g . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 ∈ Grp)
4443ad3antrrr 766 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝐺 ∈ Grp)
45 simpllr 799 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝑢𝑋)
4625subgss 17595 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
4723, 46syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾𝑋)
4847ad3antrrr 766 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝐾𝑋)
49 simprl 794 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝑧𝐾)
5048, 49sseldd 3604 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝑧𝑋)
5125, 26, 27grpaddsubass 17505 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ (𝑢𝑋𝑧𝑋𝑢𝑋)) → ((𝑢 + 𝑧) 𝑢) = (𝑢 + (𝑧 𝑢)))
5244, 45, 50, 45, 51syl13anc 1328 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → ((𝑢 + 𝑧) 𝑢) = (𝑢 + (𝑧 𝑢)))
5342, 52eqtr2d 2657 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑢 + (𝑧 𝑢)) = (𝑢 + 𝑤))
5425, 27grpsubcl 17495 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑧𝑋𝑢𝑋) → (𝑧 𝑢) ∈ 𝑋)
5544, 50, 45, 54syl3anc 1326 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑧 𝑢) ∈ 𝑋)
56 simplrr 801 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → 𝑤𝑋)
5725, 26grplcan 17477 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ ((𝑧 𝑢) ∈ 𝑋𝑤𝑋𝑢𝑋)) → ((𝑢 + (𝑧 𝑢)) = (𝑢 + 𝑤) ↔ (𝑧 𝑢) = 𝑤))
5844, 55, 56, 45, 57syl13anc 1328 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → ((𝑢 + (𝑧 𝑢)) = (𝑢 + 𝑤) ↔ (𝑧 𝑢) = 𝑤))
5953, 58mpbid 222 . . . . . . . . . . . . . 14 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑧 𝑢) = 𝑤)
6025, 26, 27grpsubadd 17503 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (𝑧𝑋𝑢𝑋𝑤𝑋)) → ((𝑧 𝑢) = 𝑤 ↔ (𝑤 + 𝑢) = 𝑧))
6144, 50, 45, 56, 60syl13anc 1328 . . . . . . . . . . . . . 14 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → ((𝑧 𝑢) = 𝑤 ↔ (𝑤 + 𝑢) = 𝑧))
6259, 61mpbid 222 . . . . . . . . . . . . 13 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑤 + 𝑢) = 𝑧)
6362, 49eqeltrd 2701 . . . . . . . . . . . 12 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑧𝐾 ∧ (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢))) → (𝑤 + 𝑢) ∈ 𝐾)
6463rexlimdvaa 3032 . . . . . . . . . . 11 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → (∃𝑧𝐾 (𝑢 + 𝑤) = ((𝑢 + 𝑧) 𝑢) → (𝑤 + 𝑢) ∈ 𝐾))
6541, 64syl5bi 232 . . . . . . . . . 10 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → ((𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) → (𝑤 + 𝑢) ∈ 𝐾))
66 simpr 477 . . . . . . . . . . . . . 14 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (𝑤 + 𝑢) ∈ 𝐾)
67 oveq2 6658 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑤 + 𝑢) → (𝑢 + 𝑧) = (𝑢 + (𝑤 + 𝑢)))
6867oveq1d 6665 . . . . . . . . . . . . . . 15 (𝑧 = (𝑤 + 𝑢) → ((𝑢 + 𝑧) 𝑢) = ((𝑢 + (𝑤 + 𝑢)) 𝑢))
69 ovex 6678 . . . . . . . . . . . . . . 15 ((𝑢 + (𝑤 + 𝑢)) 𝑢) ∈ V
7068, 28, 69fvmpt 6282 . . . . . . . . . . . . . 14 ((𝑤 + 𝑢) ∈ 𝐾 → ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))‘(𝑤 + 𝑢)) = ((𝑢 + (𝑤 + 𝑢)) 𝑢))
7166, 70syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))‘(𝑤 + 𝑢)) = ((𝑢 + (𝑤 + 𝑢)) 𝑢))
7243ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → 𝐺 ∈ Grp)
73 simpllr 799 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → 𝑢𝑋)
74 simplrr 801 . . . . . . . . . . . . . . 15 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → 𝑤𝑋)
7525, 26grpass 17431 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (𝑢𝑋𝑤𝑋𝑢𝑋)) → ((𝑢 + 𝑤) + 𝑢) = (𝑢 + (𝑤 + 𝑢)))
7672, 73, 74, 73, 75syl13anc 1328 . . . . . . . . . . . . . 14 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑢 + 𝑤) + 𝑢) = (𝑢 + (𝑤 + 𝑢)))
7776oveq1d 6665 . . . . . . . . . . . . 13 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (((𝑢 + 𝑤) + 𝑢) 𝑢) = ((𝑢 + (𝑤 + 𝑢)) 𝑢))
7825, 26grpcl 17430 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑤𝑋) → (𝑢 + 𝑤) ∈ 𝑋)
7972, 73, 74, 78syl3anc 1326 . . . . . . . . . . . . . 14 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (𝑢 + 𝑤) ∈ 𝑋)
8025, 26, 27grppncan 17506 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (𝑢 + 𝑤) ∈ 𝑋𝑢𝑋) → (((𝑢 + 𝑤) + 𝑢) 𝑢) = (𝑢 + 𝑤))
8172, 79, 73, 80syl3anc 1326 . . . . . . . . . . . . 13 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (((𝑢 + 𝑤) + 𝑢) 𝑢) = (𝑢 + 𝑤))
8271, 77, 813eqtr2d 2662 . . . . . . . . . . . 12 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))‘(𝑤 + 𝑢)) = (𝑢 + 𝑤))
83 ovex 6678 . . . . . . . . . . . . . 14 ((𝑢 + 𝑧) 𝑢) ∈ V
8483, 28fnmpti 6022 . . . . . . . . . . . . 13 (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) Fn 𝐾
85 fnfvelrn 6356 . . . . . . . . . . . . 13 (((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) Fn 𝐾 ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))‘(𝑤 + 𝑢)) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
8684, 66, 85sylancr 695 . . . . . . . . . . . 12 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))‘(𝑤 + 𝑢)) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
8782, 86eqeltrrd 2702 . . . . . . . . . . 11 ((((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) ∧ (𝑤 + 𝑢) ∈ 𝐾) → (𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
8887ex 450 . . . . . . . . . 10 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → ((𝑤 + 𝑢) ∈ 𝐾 → (𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
8965, 88impbid 202 . . . . . . . . 9 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → ((𝑢 + 𝑤) ∈ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ↔ (𝑤 + 𝑢) ∈ 𝐾))
9036, 89bitrd 268 . . . . . . . 8 (((𝜑𝑢𝑋) ∧ ((𝑢 𝐾) = 𝐾𝑤𝑋)) → ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾))
9190anassrs 680 . . . . . . 7 ((((𝜑𝑢𝑋) ∧ (𝑢 𝐾) = 𝐾) ∧ 𝑤𝑋) → ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾))
9291ralrimiva 2966 . . . . . 6 (((𝜑𝑢𝑋) ∧ (𝑢 𝐾) = 𝐾) → ∀𝑤𝑋 ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾))
931elnmz 17633 . . . . . 6 (𝑢𝑁 ↔ (𝑢𝑋 ∧ ∀𝑤𝑋 ((𝑢 + 𝑤) ∈ 𝐾 ↔ (𝑤 + 𝑢) ∈ 𝐾)))
9432, 92, 93sylanbrc 698 . . . . 5 (((𝜑𝑢𝑋) ∧ (𝑢 𝐾) = 𝐾) → 𝑢𝑁)
9531, 94impbida 877 . . . 4 ((𝜑𝑢𝑋) → (𝑢𝑁 ↔ (𝑢 𝐾) = 𝐾))
9695rabbi2dva 3821 . . 3 (𝜑 → (𝑋𝑁) = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾})
975, 96syl5eqr 2670 . 2 (𝜑𝑁 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾})
98 sylow3lem2.h . 2 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
9997, 98syl6reqr 2675 1 (𝜑𝐻 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cin 3573  wss 3574  cmpt 4729  ran crn 5115   Fn wfn 5883  cfv 5888  (class class class)co 6650  cmpt2 6652  Fincfn 7955  cprime 15385  Basecbs 15857  +gcplusg 15941  Grpcgrp 17422  -gcsg 17424  SubGrpcsubg 17588   pSyl cslw 17947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-slw 17951
This theorem is referenced by:  sylow3lem3  18044
  Copyright terms: Public domain W3C validator