![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoid0 | Structured version Visualization version GIF version |
Description: A trace-preserving endomorphism is the additive identity iff at least one of its values (at a non-identity translation) is the identity translation. (Contributed by NM, 1-Aug-2013.) |
Ref | Expression |
---|---|
tendoid0.b | ⊢ 𝐵 = (Base‘𝐾) |
tendoid0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendoid0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendoid0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
tendoid0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
tendoid0 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3l 1089 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → 𝐹 ∈ 𝑇) | |
2 | tendoid0.o | . . . . . 6 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
3 | tendoid0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
4 | 2, 3 | tendo02 36075 | . . . . 5 ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
6 | 5 | eqeq2d 2632 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = (𝑂‘𝐹) ↔ (𝑈‘𝐹) = ( I ↾ 𝐵))) |
7 | simpl1 1064 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | simpl2 1065 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝑈 ∈ 𝐸) | |
9 | tendoid0.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
10 | tendoid0.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
11 | tendoid0.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
12 | 3, 9, 10, 11, 2 | tendo0cl 36078 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
13 | 7, 12 | syl 17 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝑂 ∈ 𝐸) |
14 | simpr 477 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → (𝑈‘𝐹) = (𝑂‘𝐹)) | |
15 | simpl3l 1116 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝐹 ∈ 𝑇) | |
16 | simpl3r 1117 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝐹 ≠ ( I ↾ 𝐵)) | |
17 | 3, 9, 10, 11 | tendocan 36112 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑂 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → 𝑈 = 𝑂) |
18 | 7, 8, 13, 14, 15, 16, 17 | syl132anc 1344 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝑈 = 𝑂) |
19 | 18 | ex 450 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = (𝑂‘𝐹) → 𝑈 = 𝑂)) |
20 | 6, 19 | sylbird 250 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = ( I ↾ 𝐵) → 𝑈 = 𝑂)) |
21 | fveq1 6190 | . . . 4 ⊢ (𝑈 = 𝑂 → (𝑈‘𝐹) = (𝑂‘𝐹)) | |
22 | 21 | eqeq1d 2624 | . . 3 ⊢ (𝑈 = 𝑂 → ((𝑈‘𝐹) = ( I ↾ 𝐵) ↔ (𝑂‘𝐹) = ( I ↾ 𝐵))) |
23 | 5, 22 | syl5ibrcom 237 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → (𝑈 = 𝑂 → (𝑈‘𝐹) = ( I ↾ 𝐵))) |
24 | 20, 23 | impbid 202 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ↦ cmpt 4729 I cid 5023 ↾ cres 5116 ‘cfv 5888 Basecbs 15857 HLchlt 34637 LHypclh 35270 LTrncltrn 35387 TEndoctendo 36040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-undef 7399 df-map 7859 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tendo 36043 |
This theorem is referenced by: tendoconid 36117 tendotr 36118 cdleml3N 36266 tendospcanN 36312 |
Copyright terms: Public domain | W3C validator |