| Step | Hyp | Ref
| Expression |
| 1 | | simpl 473 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | tendoicl.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 3 | | tendoicl.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 4 | | tendoicl.e |
. . . 4
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| 5 | | tendoicl.i |
. . . 4
⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) |
| 6 | 2, 3, 4, 5 | tendoicl 36084 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝐼‘𝑆) ∈ 𝐸) |
| 7 | | simpr 477 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑆 ∈ 𝐸) |
| 8 | | tendoi.p |
. . . 4
⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
| 9 | 2, 3, 4, 8 | tendoplcl 36069 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑆) ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) → ((𝐼‘𝑆)𝑃𝑆) ∈ 𝐸) |
| 10 | 1, 6, 7, 9 | syl3anc 1326 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ((𝐼‘𝑆)𝑃𝑆) ∈ 𝐸) |
| 11 | | tendoi.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
| 12 | | tendoi.o |
. . . 4
⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| 13 | 11, 2, 3, 4, 12 | tendo0cl 36078 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
| 14 | 13 | adantr 481 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑂 ∈ 𝐸) |
| 15 | 5, 3 | tendoi2 36083 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝐼‘𝑆)‘𝑔) = ◡(𝑆‘𝑔)) |
| 16 | 15 | adantll 750 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝐼‘𝑆)‘𝑔) = ◡(𝑆‘𝑔)) |
| 17 | 16 | coeq1d 5283 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((𝐼‘𝑆)‘𝑔) ∘ (𝑆‘𝑔)) = (◡(𝑆‘𝑔) ∘ (𝑆‘𝑔))) |
| 18 | | simpll 790 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 19 | 2, 3, 4 | tendocl 36055 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔) ∈ 𝑇) |
| 20 | 19 | 3expa 1265 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔) ∈ 𝑇) |
| 21 | 11, 2, 3 | ltrn1o 35410 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝑔) ∈ 𝑇) → (𝑆‘𝑔):𝐵–1-1-onto→𝐵) |
| 22 | 18, 20, 21 | syl2anc 693 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔):𝐵–1-1-onto→𝐵) |
| 23 | | f1ococnv1 6165 |
. . . . . 6
⊢ ((𝑆‘𝑔):𝐵–1-1-onto→𝐵 → (◡(𝑆‘𝑔) ∘ (𝑆‘𝑔)) = ( I ↾ 𝐵)) |
| 24 | 22, 23 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (◡(𝑆‘𝑔) ∘ (𝑆‘𝑔)) = ( I ↾ 𝐵)) |
| 25 | 17, 24 | eqtrd 2656 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((𝐼‘𝑆)‘𝑔) ∘ (𝑆‘𝑔)) = ( I ↾ 𝐵)) |
| 26 | 6 | adantr 481 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝐼‘𝑆) ∈ 𝐸) |
| 27 | | simplr 792 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑆 ∈ 𝐸) |
| 28 | | simpr 477 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑔 ∈ 𝑇) |
| 29 | 8, 3 | tendopl2 36065 |
. . . . 5
⊢ (((𝐼‘𝑆) ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (((𝐼‘𝑆)𝑃𝑆)‘𝑔) = (((𝐼‘𝑆)‘𝑔) ∘ (𝑆‘𝑔))) |
| 30 | 26, 27, 28, 29 | syl3anc 1326 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((𝐼‘𝑆)𝑃𝑆)‘𝑔) = (((𝐼‘𝑆)‘𝑔) ∘ (𝑆‘𝑔))) |
| 31 | 12, 11 | tendo02 36075 |
. . . . 5
⊢ (𝑔 ∈ 𝑇 → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
| 32 | 31 | adantl 482 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
| 33 | 25, 30, 32 | 3eqtr4d 2666 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((𝐼‘𝑆)𝑃𝑆)‘𝑔) = (𝑂‘𝑔)) |
| 34 | 33 | ralrimiva 2966 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ∀𝑔 ∈ 𝑇 (((𝐼‘𝑆)𝑃𝑆)‘𝑔) = (𝑂‘𝑔)) |
| 35 | 2, 3, 4 | tendoeq1 36052 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (((𝐼‘𝑆)𝑃𝑆) ∈ 𝐸 ∧ 𝑂 ∈ 𝐸) ∧ ∀𝑔 ∈ 𝑇 (((𝐼‘𝑆)𝑃𝑆)‘𝑔) = (𝑂‘𝑔)) → ((𝐼‘𝑆)𝑃𝑆) = 𝑂) |
| 36 | 1, 10, 14, 34, 35 | syl121anc 1331 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ((𝐼‘𝑆)𝑃𝑆) = 𝑂) |