Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoipl Structured version   Visualization version   Unicode version

Theorem tendoipl 36085
Description: Property of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendoicl.h  |-  H  =  ( LHyp `  K
)
tendoicl.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendoicl.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendoicl.i  |-  I  =  ( s  e.  E  |->  ( f  e.  T  |->  `' ( s `  f ) ) )
tendoi.b  |-  B  =  ( Base `  K
)
tendoi.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
tendoi.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
tendoipl  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( (
I `  S ) P S )  =  O )
Distinct variable groups:    E, s    f, s, T    f, W, s    B, f    t, E   
f, H    f, K    t, f, s, T    t, W
Allowed substitution hints:    B( t, s)    P( t, f, s)    S( t, f, s)    E( f)    H( t, s)    I( t, f, s)    K( t, s)    O( t, f, s)

Proof of Theorem tendoipl
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 tendoicl.h . . . 4  |-  H  =  ( LHyp `  K
)
3 tendoicl.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
4 tendoicl.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
5 tendoicl.i . . . 4  |-  I  =  ( s  e.  E  |->  ( f  e.  T  |->  `' ( s `  f ) ) )
62, 3, 4, 5tendoicl 36084 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( I `  S )  e.  E
)
7 simpr 477 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  S  e.  E )
8 tendoi.p . . . 4  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
92, 3, 4, 8tendoplcl 36069 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( I `  S )  e.  E  /\  S  e.  E
)  ->  ( (
I `  S ) P S )  e.  E
)
101, 6, 7, 9syl3anc 1326 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( (
I `  S ) P S )  e.  E
)
11 tendoi.b . . . 4  |-  B  =  ( Base `  K
)
12 tendoi.o . . . 4  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
1311, 2, 3, 4, 12tendo0cl 36078 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
1413adantr 481 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  O  e.  E )
155, 3tendoi2 36083 . . . . . . 7  |-  ( ( S  e.  E  /\  g  e.  T )  ->  ( ( I `  S ) `  g
)  =  `' ( S `  g ) )
1615adantll 750 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  (
( I `  S
) `  g )  =  `' ( S `  g ) )
1716coeq1d 5283 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  (
( ( I `  S ) `  g
)  o.  ( S `
 g ) )  =  ( `' ( S `  g )  o.  ( S `  g ) ) )
18 simpll 790 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
192, 3, 4tendocl 36055 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  g  e.  T
)  ->  ( S `  g )  e.  T
)
20193expa 1265 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  ( S `  g )  e.  T )
2111, 2, 3ltrn1o 35410 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S `  g )  e.  T
)  ->  ( S `  g ) : B -1-1-onto-> B
)
2218, 20, 21syl2anc 693 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  ( S `  g ) : B -1-1-onto-> B )
23 f1ococnv1 6165 . . . . . 6  |-  ( ( S `  g ) : B -1-1-onto-> B  ->  ( `' ( S `  g )  o.  ( S `  g ) )  =  (  _I  |`  B ) )
2422, 23syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  ( `' ( S `  g )  o.  ( S `  g )
)  =  (  _I  |`  B ) )
2517, 24eqtrd 2656 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  (
( ( I `  S ) `  g
)  o.  ( S `
 g ) )  =  (  _I  |`  B ) )
266adantr 481 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  (
I `  S )  e.  E )
27 simplr 792 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  S  e.  E )
28 simpr 477 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  g  e.  T )
298, 3tendopl2 36065 . . . . 5  |-  ( ( ( I `  S
)  e.  E  /\  S  e.  E  /\  g  e.  T )  ->  ( ( ( I `
 S ) P S ) `  g
)  =  ( ( ( I `  S
) `  g )  o.  ( S `  g
) ) )
3026, 27, 28, 29syl3anc 1326 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  (
( ( I `  S ) P S ) `  g )  =  ( ( ( I `  S ) `
 g )  o.  ( S `  g
) ) )
3112, 11tendo02 36075 . . . . 5  |-  ( g  e.  T  ->  ( O `  g )  =  (  _I  |`  B ) )
3231adantl 482 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  ( O `  g )  =  (  _I  |`  B ) )
3325, 30, 323eqtr4d 2666 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  (
( ( I `  S ) P S ) `  g )  =  ( O `  g ) )
3433ralrimiva 2966 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  A. g  e.  T  ( (
( I `  S
) P S ) `
 g )  =  ( O `  g
) )
352, 3, 4tendoeq1 36052 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( I `  S ) P S )  e.  E  /\  O  e.  E )  /\  A. g  e.  T  (
( ( I `  S ) P S ) `  g )  =  ( O `  g ) )  -> 
( ( I `  S ) P S )  =  O )
361, 10, 14, 34, 35syl121anc 1331 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( (
I `  S ) P S )  =  O )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    |-> cmpt 4729    _I cid 5023   `'ccnv 5113    |` cres 5116    o. ccom 5118   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   TEndoctendo 36040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043
This theorem is referenced by:  tendoipl2  36086  erngdvlem1  36276  erngdvlem1-rN  36284
  Copyright terms: Public domain W3C validator