| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfrlem5 | Structured version Visualization version Unicode version | ||
| Description: Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| tfrlem.1 |
|
| Ref | Expression |
|---|---|
| tfrlem5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 |
. . 3
| |
| 2 | vex 3203 |
. . 3
| |
| 3 | 1, 2 | tfrlem3a 7473 |
. 2
|
| 4 | vex 3203 |
. . 3
| |
| 5 | 1, 4 | tfrlem3a 7473 |
. 2
|
| 6 | reeanv 3107 |
. . 3
| |
| 7 | simp2ll 1128 |
. . . . . . . . 9
| |
| 8 | simp3l 1089 |
. . . . . . . . 9
| |
| 9 | fnbr 5993 |
. . . . . . . . 9
| |
| 10 | 7, 8, 9 | syl2anc 693 |
. . . . . . . 8
|
| 11 | simp2rl 1130 |
. . . . . . . . 9
| |
| 12 | simp3r 1090 |
. . . . . . . . 9
| |
| 13 | fnbr 5993 |
. . . . . . . . 9
| |
| 14 | 11, 12, 13 | syl2anc 693 |
. . . . . . . 8
|
| 15 | 10, 14 | elind 3798 |
. . . . . . 7
|
| 16 | onin 5754 |
. . . . . . . . 9
| |
| 17 | 16 | 3ad2ant1 1082 |
. . . . . . . 8
|
| 18 | fnfun 5988 |
. . . . . . . . . 10
| |
| 19 | 7, 18 | syl 17 |
. . . . . . . . 9
|
| 20 | inss1 3833 |
. . . . . . . . . 10
| |
| 21 | fndm 5990 |
. . . . . . . . . . 11
| |
| 22 | 7, 21 | syl 17 |
. . . . . . . . . 10
|
| 23 | 20, 22 | syl5sseqr 3654 |
. . . . . . . . 9
|
| 24 | 19, 23 | jca 554 |
. . . . . . . 8
|
| 25 | fnfun 5988 |
. . . . . . . . . 10
| |
| 26 | 11, 25 | syl 17 |
. . . . . . . . 9
|
| 27 | inss2 3834 |
. . . . . . . . . 10
| |
| 28 | fndm 5990 |
. . . . . . . . . . 11
| |
| 29 | 11, 28 | syl 17 |
. . . . . . . . . 10
|
| 30 | 27, 29 | syl5sseqr 3654 |
. . . . . . . . 9
|
| 31 | 26, 30 | jca 554 |
. . . . . . . 8
|
| 32 | simp2lr 1129 |
. . . . . . . . 9
| |
| 33 | ssralv 3666 |
. . . . . . . . 9
| |
| 34 | 20, 32, 33 | mpsyl 68 |
. . . . . . . 8
|
| 35 | simp2rr 1131 |
. . . . . . . . 9
| |
| 36 | ssralv 3666 |
. . . . . . . . 9
| |
| 37 | 27, 35, 36 | mpsyl 68 |
. . . . . . . 8
|
| 38 | 17, 24, 31, 34, 37 | tfrlem1 7472 |
. . . . . . 7
|
| 39 | fveq2 6191 |
. . . . . . . . 9
| |
| 40 | fveq2 6191 |
. . . . . . . . 9
| |
| 41 | 39, 40 | eqeq12d 2637 |
. . . . . . . 8
|
| 42 | 41 | rspcv 3305 |
. . . . . . 7
|
| 43 | 15, 38, 42 | sylc 65 |
. . . . . 6
|
| 44 | funbrfv 6234 |
. . . . . . 7
| |
| 45 | 19, 8, 44 | sylc 65 |
. . . . . 6
|
| 46 | funbrfv 6234 |
. . . . . . 7
| |
| 47 | 26, 12, 46 | sylc 65 |
. . . . . 6
|
| 48 | 43, 45, 47 | 3eqtr3d 2664 |
. . . . 5
|
| 49 | 48 | 3exp 1264 |
. . . 4
|
| 50 | 49 | rexlimivv 3036 |
. . 3
|
| 51 | 6, 50 | sylbir 225 |
. 2
|
| 52 | 3, 5, 51 | syl2anb 496 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 |
| This theorem is referenced by: tfrlem7 7479 |
| Copyright terms: Public domain | W3C validator |