MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toprntopon Structured version   Visualization version   Unicode version

Theorem toprntopon 20729
Description: A topology is the same thing as a topology on a set (variable-free version). (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
toprntopon  |-  Top  =  U. ran TopOn

Proof of Theorem toprntopon
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toptopon2 20723 . . . . . 6  |-  ( x  e.  Top  <->  x  e.  (TopOn `  U. x ) )
21biimpi 206 . . . . 5  |-  ( x  e.  Top  ->  x  e.  (TopOn `  U. x ) )
3 fvex 6201 . . . . . 6  |-  (TopOn `  U. x )  e.  _V
4 eleq2 2690 . . . . . . . 8  |-  ( y  =  (TopOn `  U. x )  ->  (
x  e.  y  <->  x  e.  (TopOn `  U. x ) ) )
5 eleq1 2689 . . . . . . . 8  |-  ( y  =  (TopOn `  U. x )  ->  (
y  e.  ran TopOn  <->  (TopOn `  U. x )  e.  ran TopOn ) )
64, 5anbi12d 747 . . . . . . 7  |-  ( y  =  (TopOn `  U. x )  ->  (
( x  e.  y  /\  y  e.  ran TopOn )  <-> 
( x  e.  (TopOn `  U. x )  /\  (TopOn `  U. x )  e.  ran TopOn ) )
)
7 simpl 473 . . . . . . . . 9  |-  ( ( x  e.  (TopOn `  U. x )  /\  (TopOn ` 
U. x )  e. 
ran TopOn )  ->  x  e.  (TopOn `  U. x ) )
8 fntopon 20728 . . . . . . . . . . . 12  |- TopOn  Fn  _V
9 vuniex 6954 . . . . . . . . . . . 12  |-  U. x  e.  _V
108, 9pm3.2i 471 . . . . . . . . . . 11  |-  (TopOn  Fn  _V  /\  U. x  e. 
_V )
11 fnfvelrn 6356 . . . . . . . . . . 11  |-  ( (TopOn 
Fn  _V  /\  U. x  e.  _V )  ->  (TopOn ` 
U. x )  e. 
ran TopOn )
1210, 11ax-mp 5 . . . . . . . . . 10  |-  (TopOn `  U. x )  e.  ran TopOn
1312jctr 565 . . . . . . . . 9  |-  ( x  e.  (TopOn `  U. x )  ->  (
x  e.  (TopOn `  U. x )  /\  (TopOn ` 
U. x )  e. 
ran TopOn ) )
147, 13impbii 199 . . . . . . . 8  |-  ( ( x  e.  (TopOn `  U. x )  /\  (TopOn ` 
U. x )  e. 
ran TopOn )  <->  x  e.  (TopOn ` 
U. x ) )
1514a1i 11 . . . . . . 7  |-  ( y  =  (TopOn `  U. x )  ->  (
( x  e.  (TopOn `  U. x )  /\  (TopOn `  U. x )  e.  ran TopOn )  <->  x  e.  (TopOn `  U. x ) ) )
166, 15bitrd 268 . . . . . 6  |-  ( y  =  (TopOn `  U. x )  ->  (
( x  e.  y  /\  y  e.  ran TopOn )  <-> 
x  e.  (TopOn `  U. x ) ) )
173, 16spcev 3300 . . . . 5  |-  ( x  e.  (TopOn `  U. x )  ->  E. y
( x  e.  y  /\  y  e.  ran TopOn ) )
182, 17syl 17 . . . 4  |-  ( x  e.  Top  ->  E. y
( x  e.  y  /\  y  e.  ran TopOn ) )
19 funtopon 20725 . . . . . . . . . 10  |-  Fun TopOn
20 elrnrexdm 6363 . . . . . . . . . 10  |-  ( Fun TopOn  ->  ( y  e.  ran TopOn  ->  E. z  e.  dom TopOn y  =  (TopOn `  z
) ) )
2119, 20ax-mp 5 . . . . . . . . 9  |-  ( y  e.  ran TopOn  ->  E. z  e.  dom TopOn y  =  (TopOn `  z ) )
22 rexex 3002 . . . . . . . . 9  |-  ( E. z  e.  dom TopOn y  =  (TopOn `  z )  ->  E. z  y  =  (TopOn `  z )
)
2321, 22syl 17 . . . . . . . 8  |-  ( y  e.  ran TopOn  ->  E. z 
y  =  (TopOn `  z ) )
2423anim2i 593 . . . . . . 7  |-  ( ( x  e.  y  /\  y  e.  ran TopOn )  -> 
( x  e.  y  /\  E. z  y  =  (TopOn `  z
) ) )
25 19.42v 1918 . . . . . . . . 9  |-  ( E. z ( x  e.  y  /\  y  =  (TopOn `  z )
)  <->  ( x  e.  y  /\  E. z 
y  =  (TopOn `  z ) ) )
2625biimpri 218 . . . . . . . 8  |-  ( ( x  e.  y  /\  E. z  y  =  (TopOn `  z ) )  ->  E. z ( x  e.  y  /\  y  =  (TopOn `  z )
) )
27 eqimss 3657 . . . . . . . . . . . 12  |-  ( y  =  (TopOn `  z
)  ->  y  C_  (TopOn `  z ) )
2827sseld 3602 . . . . . . . . . . 11  |-  ( y  =  (TopOn `  z
)  ->  ( x  e.  y  ->  x  e.  (TopOn `  z )
) )
2928com12 32 . . . . . . . . . 10  |-  ( x  e.  y  ->  (
y  =  (TopOn `  z )  ->  x  e.  (TopOn `  z )
) )
3029imp 445 . . . . . . . . 9  |-  ( ( x  e.  y  /\  y  =  (TopOn `  z
) )  ->  x  e.  (TopOn `  z )
)
3130eximi 1762 . . . . . . . 8  |-  ( E. z ( x  e.  y  /\  y  =  (TopOn `  z )
)  ->  E. z  x  e.  (TopOn `  z
) )
3226, 31syl 17 . . . . . . 7  |-  ( ( x  e.  y  /\  E. z  y  =  (TopOn `  z ) )  ->  E. z  x  e.  (TopOn `  z ) )
3324, 32syl 17 . . . . . 6  |-  ( ( x  e.  y  /\  y  e.  ran TopOn )  ->  E. z  x  e.  (TopOn `  z ) )
34 topontop 20718 . . . . . . . 8  |-  ( x  e.  (TopOn `  z
)  ->  x  e.  Top )
3534eximi 1762 . . . . . . 7  |-  ( E. z  x  e.  (TopOn `  z )  ->  E. z  x  e.  Top )
36 ax5e 1841 . . . . . . 7  |-  ( E. z  x  e.  Top  ->  x  e.  Top )
3735, 36syl 17 . . . . . 6  |-  ( E. z  x  e.  (TopOn `  z )  ->  x  e.  Top )
3833, 37syl 17 . . . . 5  |-  ( ( x  e.  y  /\  y  e.  ran TopOn )  ->  x  e.  Top )
3938exlimiv 1858 . . . 4  |-  ( E. y ( x  e.  y  /\  y  e. 
ran TopOn )  ->  x  e. 
Top )
4018, 39impbii 199 . . 3  |-  ( x  e.  Top  <->  E. y
( x  e.  y  /\  y  e.  ran TopOn ) )
41 eluni 4439 . . . 4  |-  ( x  e.  U. ran TopOn  <->  E. y
( x  e.  y  /\  y  e.  ran TopOn ) )
4241bicomi 214 . . 3  |-  ( E. y ( x  e.  y  /\  y  e. 
ran TopOn )  <->  x  e.  U. ran TopOn )
4340, 42bitri 264 . 2  |-  ( x  e.  Top  <->  x  e.  U.
ran TopOn )
4443eqriv 2619 1  |-  Top  =  U. ran TopOn
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200   U.cuni 4436   dom cdm 5114   ran crn 5115   Fun wfun 5882    Fn wfn 5883   ` cfv 5888   Topctop 20698  TopOnctopon 20715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-topon 20716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator