MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfilss Structured version   Visualization version   GIF version

Theorem trfilss 21693
Description: If 𝐴 is a member of the filter, then the filter truncated to 𝐴 is a subset of the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
trfilss ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ⊆ 𝐹)

Proof of Theorem trfilss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 restval 16087 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) = ran (𝑥𝐹 ↦ (𝑥𝐴)))
2 filin 21658 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹𝐴𝐹) → (𝑥𝐴) ∈ 𝐹)
323expa 1265 . . . . 5 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) ∧ 𝐴𝐹) → (𝑥𝐴) ∈ 𝐹)
43an32s 846 . . . 4 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) ∧ 𝑥𝐹) → (𝑥𝐴) ∈ 𝐹)
5 eqid 2622 . . . 4 (𝑥𝐹 ↦ (𝑥𝐴)) = (𝑥𝐹 ↦ (𝑥𝐴))
64, 5fmptd 6385 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑥𝐹 ↦ (𝑥𝐴)):𝐹𝐹)
7 frn 6053 . . 3 ((𝑥𝐹 ↦ (𝑥𝐴)):𝐹𝐹 → ran (𝑥𝐹 ↦ (𝑥𝐴)) ⊆ 𝐹)
86, 7syl 17 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → ran (𝑥𝐹 ↦ (𝑥𝐴)) ⊆ 𝐹)
91, 8eqsstrd 3639 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ⊆ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  cin 3573  wss 3574  cmpt 4729  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  t crest 16081  Filcfil 21649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rest 16083  df-fbas 19743  df-fil 21650
This theorem is referenced by:  fgtr  21694  flimrest  21787
  Copyright terms: Public domain W3C validator