MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfilss Structured version   Visualization version   Unicode version

Theorem trfilss 21693
Description: If  A is a member of the filter, then the filter truncated to  A is a subset of the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
trfilss  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  C_  F
)

Proof of Theorem trfilss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 restval 16087 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  =  ran  ( x  e.  F  |->  ( x  i^i  A
) ) )
2 filin 21658 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  x  e.  F  /\  A  e.  F )  ->  (
x  i^i  A )  e.  F )
323expa 1265 . . . . 5  |-  ( ( ( F  e.  ( Fil `  X )  /\  x  e.  F
)  /\  A  e.  F )  ->  (
x  i^i  A )  e.  F )
43an32s 846 . . . 4  |-  ( ( ( F  e.  ( Fil `  X )  /\  A  e.  F
)  /\  x  e.  F )  ->  (
x  i^i  A )  e.  F )
5 eqid 2622 . . . 4  |-  ( x  e.  F  |->  ( x  i^i  A ) )  =  ( x  e.  F  |->  ( x  i^i 
A ) )
64, 5fmptd 6385 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
x  e.  F  |->  ( x  i^i  A ) ) : F --> F )
7 frn 6053 . . 3  |-  ( ( x  e.  F  |->  ( x  i^i  A ) ) : F --> F  ->  ran  ( x  e.  F  |->  ( x  i^i  A
) )  C_  F
)
86, 7syl 17 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ran  ( x  e.  F  |->  ( x  i^i  A
) )  C_  F
)
91, 8eqsstrd 3639 1  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  C_  F
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990    i^i cin 3573    C_ wss 3574    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Filcfil 21649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rest 16083  df-fbas 19743  df-fil 21650
This theorem is referenced by:  fgtr  21694  flimrest  21787
  Copyright terms: Public domain W3C validator