| Step | Hyp | Ref
| Expression |
| 1 | | filfbas 21652 |
. . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
| 2 | | fbncp 21643 |
. . . . . . . 8
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ (𝑋 ∖ 𝐴) ∈ 𝐹) |
| 3 | 1, 2 | sylan 488 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ (𝑋 ∖ 𝐴) ∈ 𝐹) |
| 4 | | filelss 21656 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) |
| 5 | | trfil3 21692 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑋 ∖ 𝐴) ∈ 𝐹)) |
| 6 | 4, 5 | syldan 487 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → ((𝐹 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑋 ∖ 𝐴) ∈ 𝐹)) |
| 7 | 3, 6 | mpbird 247 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ∈ (Fil‘𝐴)) |
| 8 | | filfbas 21652 |
. . . . . 6
⊢ ((𝐹 ↾t 𝐴) ∈ (Fil‘𝐴) → (𝐹 ↾t 𝐴) ∈ (fBas‘𝐴)) |
| 9 | 7, 8 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ∈ (fBas‘𝐴)) |
| 10 | | restsspw 16092 |
. . . . . 6
⊢ (𝐹 ↾t 𝐴) ⊆ 𝒫 𝐴 |
| 11 | | sspwb 4917 |
. . . . . . 7
⊢ (𝐴 ⊆ 𝑋 ↔ 𝒫 𝐴 ⊆ 𝒫 𝑋) |
| 12 | 4, 11 | sylib 208 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝒫 𝐴 ⊆ 𝒫 𝑋) |
| 13 | 10, 12 | syl5ss 3614 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ⊆ 𝒫 𝑋) |
| 14 | | filtop 21659 |
. . . . . 6
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
| 15 | 14 | adantr 481 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝑋 ∈ 𝐹) |
| 16 | | fbasweak 21669 |
. . . . 5
⊢ (((𝐹 ↾t 𝐴) ∈ (fBas‘𝐴) ∧ (𝐹 ↾t 𝐴) ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐹) → (𝐹 ↾t 𝐴) ∈ (fBas‘𝑋)) |
| 17 | 9, 13, 15, 16 | syl3anc 1326 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ∈ (fBas‘𝑋)) |
| 18 | 1 | adantr 481 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐹 ∈ (fBas‘𝑋)) |
| 19 | | trfilss 21693 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ⊆ 𝐹) |
| 20 | | fgss 21677 |
. . . 4
⊢ (((𝐹 ↾t 𝐴) ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (fBas‘𝑋) ∧ (𝐹 ↾t 𝐴) ⊆ 𝐹) → (𝑋filGen(𝐹 ↾t 𝐴)) ⊆ (𝑋filGen𝐹)) |
| 21 | 17, 18, 19, 20 | syl3anc 1326 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑋filGen(𝐹 ↾t 𝐴)) ⊆ (𝑋filGen𝐹)) |
| 22 | | fgfil 21679 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) |
| 23 | 22 | adantr 481 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑋filGen𝐹) = 𝐹) |
| 24 | 21, 23 | sseqtrd 3641 |
. 2
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑋filGen(𝐹 ↾t 𝐴)) ⊆ 𝐹) |
| 25 | | filelss 21656 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝑋) |
| 26 | 25 | ex 450 |
. . . . . 6
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → 𝑥 ⊆ 𝑋)) |
| 27 | 26 | adantr 481 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∈ 𝐹 → 𝑥 ⊆ 𝑋)) |
| 28 | | elrestr 16089 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝑥 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴)) |
| 29 | 28 | 3expa 1265 |
. . . . . . 7
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑥 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴)) |
| 30 | | inss1 3833 |
. . . . . . 7
⊢ (𝑥 ∩ 𝐴) ⊆ 𝑥 |
| 31 | | sseq1 3626 |
. . . . . . . 8
⊢ (𝑦 = (𝑥 ∩ 𝐴) → (𝑦 ⊆ 𝑥 ↔ (𝑥 ∩ 𝐴) ⊆ 𝑥)) |
| 32 | 31 | rspcev 3309 |
. . . . . . 7
⊢ (((𝑥 ∩ 𝐴) ∈ (𝐹 ↾t 𝐴) ∧ (𝑥 ∩ 𝐴) ⊆ 𝑥) → ∃𝑦 ∈ (𝐹 ↾t 𝐴)𝑦 ⊆ 𝑥) |
| 33 | 29, 30, 32 | sylancl 694 |
. . . . . 6
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑥 ∈ 𝐹) → ∃𝑦 ∈ (𝐹 ↾t 𝐴)𝑦 ⊆ 𝑥) |
| 34 | 33 | ex 450 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∈ 𝐹 → ∃𝑦 ∈ (𝐹 ↾t 𝐴)𝑦 ⊆ 𝑥)) |
| 35 | 27, 34 | jcad 555 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∈ 𝐹 → (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ (𝐹 ↾t 𝐴)𝑦 ⊆ 𝑥))) |
| 36 | | elfg 21675 |
. . . . 5
⊢ ((𝐹 ↾t 𝐴) ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen(𝐹 ↾t 𝐴)) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ (𝐹 ↾t 𝐴)𝑦 ⊆ 𝑥))) |
| 37 | 17, 36 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∈ (𝑋filGen(𝐹 ↾t 𝐴)) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ (𝐹 ↾t 𝐴)𝑦 ⊆ 𝑥))) |
| 38 | 35, 37 | sylibrd 249 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∈ 𝐹 → 𝑥 ∈ (𝑋filGen(𝐹 ↾t 𝐴)))) |
| 39 | 38 | ssrdv 3609 |
. 2
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐹 ⊆ (𝑋filGen(𝐹 ↾t 𝐴))) |
| 40 | 24, 39 | eqssd 3620 |
1
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑋filGen(𝐹 ↾t 𝐴)) = 𝐹) |