MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfil3 Structured version   Visualization version   GIF version

Theorem trfil3 21692
Description: Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
trfil3 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))

Proof of Theorem trfil3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 trfil2 21691 . 2 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣𝐿 (𝑣𝐴) ≠ ∅))
2 dfral2 2994 . . 3 (∀𝑣𝐿 (𝑣𝐴) ≠ ∅ ↔ ¬ ∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅)
3 nne 2798 . . . . . . . 8 (¬ (𝑣𝐴) ≠ ∅ ↔ (𝑣𝐴) = ∅)
4 filelss 21656 . . . . . . . . 9 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣𝐿) → 𝑣𝑌)
5 reldisj 4020 . . . . . . . . 9 (𝑣𝑌 → ((𝑣𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌𝐴)))
64, 5syl 17 . . . . . . . 8 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣𝐿) → ((𝑣𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌𝐴)))
73, 6syl5bb 272 . . . . . . 7 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣𝐿) → (¬ (𝑣𝐴) ≠ ∅ ↔ 𝑣 ⊆ (𝑌𝐴)))
87rexbidva 3049 . . . . . 6 (𝐿 ∈ (Fil‘𝑌) → (∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
98adantr 481 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
10 difssd 3738 . . . . . 6 (𝐴𝑌 → (𝑌𝐴) ⊆ 𝑌)
11 elfilss 21680 . . . . . 6 ((𝐿 ∈ (Fil‘𝑌) ∧ (𝑌𝐴) ⊆ 𝑌) → ((𝑌𝐴) ∈ 𝐿 ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
1210, 11sylan2 491 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝑌𝐴) ∈ 𝐿 ↔ ∃𝑣𝐿 𝑣 ⊆ (𝑌𝐴)))
139, 12bitr4d 271 . . . 4 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ (𝑌𝐴) ∈ 𝐿))
1413notbid 308 . . 3 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (¬ ∃𝑣𝐿 ¬ (𝑣𝐴) ≠ ∅ ↔ ¬ (𝑌𝐴) ∈ 𝐿))
152, 14syl5bb 272 . 2 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∀𝑣𝐿 (𝑣𝐴) ≠ ∅ ↔ ¬ (𝑌𝐴) ∈ 𝐿))
161, 15bitrd 268 1 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  cdif 3571  cin 3573  wss 3574  c0 3915  cfv 5888  (class class class)co 6650  t crest 16081  Filcfil 21649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-rest 16083  df-fbas 19743  df-fg 19744  df-fil 21650
This theorem is referenced by:  fgtr  21694  trufil  21714  flimrest  21787  fclsrest  21828  cfilres  23094  relcmpcmet  23115
  Copyright terms: Public domain W3C validator