![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trfil3 | Structured version Visualization version GIF version |
Description: Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
trfil3 | ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trfil2 21691 | . 2 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ 𝐿 (𝑣 ∩ 𝐴) ≠ ∅)) | |
2 | dfral2 2994 | . . 3 ⊢ (∀𝑣 ∈ 𝐿 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ ∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅) | |
3 | nne 2798 | . . . . . . . 8 ⊢ (¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ (𝑣 ∩ 𝐴) = ∅) | |
4 | filelss 21656 | . . . . . . . . 9 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣 ∈ 𝐿) → 𝑣 ⊆ 𝑌) | |
5 | reldisj 4020 | . . . . . . . . 9 ⊢ (𝑣 ⊆ 𝑌 → ((𝑣 ∩ 𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌 ∖ 𝐴))) | |
6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣 ∈ 𝐿) → ((𝑣 ∩ 𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
7 | 3, 6 | syl5bb 272 | . . . . . . 7 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣 ∈ 𝐿) → (¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
8 | 7 | rexbidva 3049 | . . . . . 6 ⊢ (𝐿 ∈ (Fil‘𝑌) → (∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ ∃𝑣 ∈ 𝐿 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ ∃𝑣 ∈ 𝐿 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
10 | difssd 3738 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑌 → (𝑌 ∖ 𝐴) ⊆ 𝑌) | |
11 | elfilss 21680 | . . . . . 6 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ (𝑌 ∖ 𝐴) ⊆ 𝑌) → ((𝑌 ∖ 𝐴) ∈ 𝐿 ↔ ∃𝑣 ∈ 𝐿 𝑣 ⊆ (𝑌 ∖ 𝐴))) | |
12 | 10, 11 | sylan2 491 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝑌 ∖ 𝐴) ∈ 𝐿 ↔ ∃𝑣 ∈ 𝐿 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
13 | 9, 12 | bitr4d 271 | . . . 4 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
14 | 13 | notbid 308 | . . 3 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (¬ ∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
15 | 2, 14 | syl5bb 272 | . 2 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∀𝑣 ∈ 𝐿 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
16 | 1, 15 | bitrd 268 | 1 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 ‘cfv 5888 (class class class)co 6650 ↾t crest 16081 Filcfil 21649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-rest 16083 df-fbas 19743 df-fg 19744 df-fil 21650 |
This theorem is referenced by: fgtr 21694 trufil 21714 flimrest 21787 fclsrest 21828 cfilres 23094 relcmpcmet 23115 |
Copyright terms: Public domain | W3C validator |