| Step | Hyp | Ref
| Expression |
| 1 | | onelon 5748 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ On ∧ 𝑦 ∈ 𝑧) → 𝑦 ∈ On) |
| 2 | | vex 3203 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ V |
| 3 | | onelss 5766 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ On → (𝑦 ∈ 𝑧 → 𝑦 ⊆ 𝑧)) |
| 4 | 3 | imp 445 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ On ∧ 𝑦 ∈ 𝑧) → 𝑦 ⊆ 𝑧) |
| 5 | | ssdomg 8001 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ V → (𝑦 ⊆ 𝑧 → 𝑦 ≼ 𝑧)) |
| 6 | 2, 4, 5 | mpsyl 68 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ On ∧ 𝑦 ∈ 𝑧) → 𝑦 ≼ 𝑧) |
| 7 | 1, 6 | jca 554 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ On ∧ 𝑦 ∈ 𝑧) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝑧)) |
| 8 | | domtr 8009 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ≼ 𝑧 ∧ 𝑧 ≼ 𝐴) → 𝑦 ≼ 𝐴) |
| 9 | 8 | anim2i 593 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ (𝑦 ≼ 𝑧 ∧ 𝑧 ≼ 𝐴)) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) |
| 10 | 9 | anassrs 680 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ On ∧ 𝑦 ≼ 𝑧) ∧ 𝑧 ≼ 𝐴) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) |
| 11 | 7, 10 | sylan 488 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ On ∧ 𝑦 ∈ 𝑧) ∧ 𝑧 ≼ 𝐴) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) |
| 12 | 11 | exp31 630 |
. . . . . . . . 9
⊢ (𝑧 ∈ On → (𝑦 ∈ 𝑧 → (𝑧 ≼ 𝐴 → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)))) |
| 13 | 12 | com12 32 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑧 → (𝑧 ∈ On → (𝑧 ≼ 𝐴 → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)))) |
| 14 | 13 | impd 447 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑧 → ((𝑧 ∈ On ∧ 𝑧 ≼ 𝐴) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴))) |
| 15 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 ≼ 𝐴 ↔ 𝑧 ≼ 𝐴)) |
| 16 | 15 | elrab 3363 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ↔ (𝑧 ∈ On ∧ 𝑧 ≼ 𝐴)) |
| 17 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 ≼ 𝐴 ↔ 𝑦 ≼ 𝐴)) |
| 18 | 17 | elrab 3363 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ↔ (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) |
| 19 | 14, 16, 18 | 3imtr4g 285 |
. . . . . 6
⊢ (𝑦 ∈ 𝑧 → (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) |
| 20 | 19 | imp 445 |
. . . . 5
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) |
| 21 | 20 | gen2 1723 |
. . . 4
⊢
∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) |
| 22 | | dftr2 4754 |
. . . 4
⊢ (Tr
{𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ↔ ∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) |
| 23 | 21, 22 | mpbir 221 |
. . 3
⊢ Tr {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} |
| 24 | | ssrab2 3687 |
. . 3
⊢ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ⊆ On |
| 25 | | ordon 6982 |
. . 3
⊢ Ord
On |
| 26 | | trssord 5740 |
. . 3
⊢ ((Tr
{𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∧ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ⊆ On ∧ Ord On) → Ord {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) |
| 27 | 23, 24, 25, 26 | mp3an 1424 |
. 2
⊢ Ord
{𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} |
| 28 | | elex 3212 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| 29 | | canth2g 8114 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴) |
| 30 | | domsdomtr 8095 |
. . . . . . . . 9
⊢ ((𝑥 ≼ 𝐴 ∧ 𝐴 ≺ 𝒫 𝐴) → 𝑥 ≺ 𝒫 𝐴) |
| 31 | 29, 30 | sylan2 491 |
. . . . . . . 8
⊢ ((𝑥 ≼ 𝐴 ∧ 𝐴 ∈ V) → 𝑥 ≺ 𝒫 𝐴) |
| 32 | 31 | expcom 451 |
. . . . . . 7
⊢ (𝐴 ∈ V → (𝑥 ≼ 𝐴 → 𝑥 ≺ 𝒫 𝐴)) |
| 33 | 32 | ralrimivw 2967 |
. . . . . 6
⊢ (𝐴 ∈ V → ∀𝑥 ∈ On (𝑥 ≼ 𝐴 → 𝑥 ≺ 𝒫 𝐴)) |
| 34 | 28, 33 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ On (𝑥 ≼ 𝐴 → 𝑥 ≺ 𝒫 𝐴)) |
| 35 | | ss2rab 3678 |
. . . . 5
⊢ ({𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ↔ ∀𝑥 ∈ On (𝑥 ≼ 𝐴 → 𝑥 ≺ 𝒫 𝐴)) |
| 36 | 34, 35 | sylibr 224 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴}) |
| 37 | | pwexg 4850 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| 38 | | numth3 9292 |
. . . . . 6
⊢
(𝒫 𝐴 ∈
V → 𝒫 𝐴 ∈
dom card) |
| 39 | | cardval2 8817 |
. . . . . 6
⊢
(𝒫 𝐴 ∈
dom card → (card‘𝒫 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴}) |
| 40 | 37, 38, 39 | 3syl 18 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (card‘𝒫 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴}) |
| 41 | | fvex 6201 |
. . . . 5
⊢
(card‘𝒫 𝐴) ∈ V |
| 42 | 40, 41 | syl6eqelr 2710 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ∈ V) |
| 43 | | ssexg 4804 |
. . . 4
⊢ (({𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ∧ {𝑥 ∈ On ∣ 𝑥 ≺ 𝒫 𝐴} ∈ V) → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V) |
| 44 | 36, 42, 43 | syl2anc 693 |
. . 3
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V) |
| 45 | | elong 5731 |
. . 3
⊢ ({𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V → ({𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) |
| 46 | 44, 45 | syl 17 |
. 2
⊢ (𝐴 ∈ 𝑉 → ({𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) |
| 47 | 27, 46 | mpbiri 248 |
1
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On) |