MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskwe Structured version   Visualization version   GIF version

Theorem tskwe 8776
Description: A Tarski set is well-orderable. (Contributed by Mario Carneiro, 19-Apr-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
tskwe ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → 𝐴 ∈ dom card)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem tskwe
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4850 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 rabexg 4812 . . . 4 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∈ V)
3 incom 3805 . . . . 5 ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∩ On) = (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
4 inex1g 4801 . . . . 5 ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∈ V → ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∩ On) ∈ V)
53, 4syl5eqelr 2706 . . . 4 ({𝑥 ∈ 𝒫 𝐴𝑥𝐴} ∈ V → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ V)
6 inss1 3833 . . . . . . . . . . 11 (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ On
76sseli 3599 . . . . . . . . . 10 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧 ∈ On)
8 onelon 5748 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
98ancoms 469 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ On) → 𝑦 ∈ On)
107, 9sylan2 491 . . . . . . . . 9 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ On)
11 onelss 5766 . . . . . . . . . . . . . 14 (𝑧 ∈ On → (𝑦𝑧𝑦𝑧))
1211impcom 446 . . . . . . . . . . . . 13 ((𝑦𝑧𝑧 ∈ On) → 𝑦𝑧)
137, 12sylan2 491 . . . . . . . . . . . 12 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝑧)
14 inss2 3834 . . . . . . . . . . . . . . . . 17 (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}
1514sseli 3599 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
16 breq1 4656 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1716elrab 3363 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ↔ (𝑧 ∈ 𝒫 𝐴𝑧𝐴))
1815, 17sylib 208 . . . . . . . . . . . . . . 15 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → (𝑧 ∈ 𝒫 𝐴𝑧𝐴))
1918simpld 475 . . . . . . . . . . . . . 14 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧 ∈ 𝒫 𝐴)
2019elpwid 4170 . . . . . . . . . . . . 13 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧𝐴)
2120adantl 482 . . . . . . . . . . . 12 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑧𝐴)
2213, 21sstrd 3613 . . . . . . . . . . 11 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝐴)
23 selpw 4165 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
2422, 23sylibr 224 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ 𝒫 𝐴)
25 vex 3203 . . . . . . . . . . . 12 𝑧 ∈ V
26 ssdomg 8001 . . . . . . . . . . . 12 (𝑧 ∈ V → (𝑦𝑧𝑦𝑧))
2725, 13, 26mpsyl 68 . . . . . . . . . . 11 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝑧)
2818simprd 479 . . . . . . . . . . . 12 (𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → 𝑧𝐴)
2928adantl 482 . . . . . . . . . . 11 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑧𝐴)
30 domsdomtr 8095 . . . . . . . . . . 11 ((𝑦𝑧𝑧𝐴) → 𝑦𝐴)
3127, 29, 30syl2anc 693 . . . . . . . . . 10 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦𝐴)
32 breq1 4656 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3332elrab 3363 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ↔ (𝑦 ∈ 𝒫 𝐴𝑦𝐴))
3424, 31, 33sylanbrc 698 . . . . . . . . 9 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
3510, 34elind 3798 . . . . . . . 8 ((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
3635gen2 1723 . . . . . . 7 𝑦𝑧((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
37 dftr2 4754 . . . . . . 7 (Tr (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})) → 𝑦 ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})))
3836, 37mpbir 221 . . . . . 6 Tr (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
39 ordon 6982 . . . . . 6 Ord On
40 trssord 5740 . . . . . 6 ((Tr (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ On ∧ Ord On) → Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
4138, 6, 39, 40mp3an 1424 . . . . 5 Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
42 elong 5731 . . . . 5 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ V → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On ↔ Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})))
4341, 42mpbiri 248 . . . 4 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ V → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
441, 2, 5, 434syl 19 . . 3 (𝐴𝑉 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
4544adantr 481 . 2 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
46 simpr 477 . . . . 5 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴)
4714, 46syl5ss 3614 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴)
48 ssdomg 8001 . . . . 5 (𝐴𝑉 → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴))
4948adantr 481 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴))
5047, 49mpd 15 . . 3 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴)
51 ordirr 5741 . . . . 5 (Ord (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
5241, 51mp1i 13 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
53443ad2ant1 1082 . . . . . 6 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On)
54 elpw2g 4827 . . . . . . . . . 10 (𝐴𝑉 → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴 ↔ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴))
5554adantr 481 . . . . . . . . 9 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴 ↔ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ⊆ 𝐴))
5647, 55mpbird 247 . . . . . . . 8 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴)
57563adant3 1081 . . . . . . 7 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴)
58 simp3 1063 . . . . . . 7 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴)
59 nfcv 2764 . . . . . . . . 9 𝑥On
60 nfrab1 3122 . . . . . . . . 9 𝑥{𝑥 ∈ 𝒫 𝐴𝑥𝐴}
6159, 60nfin 3820 . . . . . . . 8 𝑥(On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
62 nfcv 2764 . . . . . . . 8 𝑥𝒫 𝐴
63 nfcv 2764 . . . . . . . . 9 𝑥
64 nfcv 2764 . . . . . . . . 9 𝑥𝐴
6561, 63, 64nfbr 4699 . . . . . . . 8 𝑥(On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴
66 breq1 4656 . . . . . . . 8 (𝑥 = (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) → (𝑥𝐴 ↔ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴))
6761, 62, 65, 66elrabf 3360 . . . . . . 7 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ↔ ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ 𝒫 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴))
6857, 58, 67sylanbrc 698 . . . . . 6 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})
6953, 68elind 3798 . . . . 5 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴 ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}))
70693expia 1267 . . . 4 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴 → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴})))
7152, 70mtod 189 . . 3 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴)
72 bren2 7986 . . 3 ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≈ 𝐴 ↔ ((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≼ 𝐴 ∧ ¬ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≺ 𝐴))
7350, 71, 72sylanbrc 698 . 2 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≈ 𝐴)
74 isnumi 8772 . 2 (((On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ∈ On ∧ (On ∩ {𝑥 ∈ 𝒫 𝐴𝑥𝐴}) ≈ 𝐴) → 𝐴 ∈ dom card)
7545, 73, 74syl2anc 693 1 ((𝐴𝑉 ∧ {𝑥 ∈ 𝒫 𝐴𝑥𝐴} ⊆ 𝐴) → 𝐴 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037  wal 1481  wcel 1990  {crab 2916  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158   class class class wbr 4653  Tr wtr 4752  dom cdm 5114  Ord word 5722  Oncon0 5723  cen 7952  cdom 7953  csdm 7954  cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-card 8765
This theorem is referenced by:  tskwe2  9595  grothac  9652
  Copyright terms: Public domain W3C validator