![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inex1g | Structured version Visualization version GIF version |
Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
inex1g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 3807 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝐵) = (𝐴 ∩ 𝐵)) | |
2 | 1 | eleq1d 2686 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝐵) ∈ V ↔ (𝐴 ∩ 𝐵) ∈ V)) |
3 | vex 3203 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | inex1 4799 | . 2 ⊢ (𝑥 ∩ 𝐵) ∈ V |
5 | 2, 4 | vtoclg 3266 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∩ cin 3573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 |
This theorem is referenced by: dmresexg 5421 onin 5754 offval 6904 offval3 7162 onsdominel 8109 ssenen 8134 inelfi 8324 fiin 8328 tskwe 8776 dfac8b 8854 ac10ct 8857 infpwfien 8885 fictb 9067 canthnum 9471 gruina 9640 ressinbas 15936 ressress 15938 qusin 16204 catcbas 16747 fpwipodrs 17164 psss 17214 gsumzres 18310 eltg 20761 eltg3 20766 ntrval 20840 restco 20968 restfpw 20983 ordtrest 21006 ordtrest2lem 21007 ordtrest2 21008 cnrmi 21164 restcnrm 21166 kgeni 21340 tsmsfbas 21931 eltsms 21936 tsmsres 21947 caussi 23095 causs 23096 elpwincl1 29357 disjdifprg2 29389 sigainb 30199 ldgenpisyslem1 30226 carsgclctun 30383 eulerpartlemgs2 30442 sseqval 30450 reprinrn 30696 bnj1177 31074 cvmsss2 31256 fnemeet2 32362 ontgval 32430 bj-discrmoore 33066 bj-diagval 33090 fin2so 33396 inex2ALTV 34105 inex3 34106 inxpex 34107 elrfi 37257 iunrelexp0 37994 fourierdlem71 40394 fourierdlem80 40403 sge0less 40609 sge0ssre 40614 carageniuncllem2 40736 dfrngc2 41972 rnghmsscmap2 41973 rngcbasALTV 41983 dfringc2 42018 rhmsscmap2 42019 rhmsscrnghm 42026 rngcresringcat 42030 ringcbasALTV 42046 srhmsubc 42076 fldc 42083 fldhmsubc 42084 rngcrescrhm 42085 srhmsubcALTV 42094 fldcALTV 42101 fldhmsubcALTV 42102 rngcrescrhmALTV 42103 offval0 42299 |
Copyright terms: Public domain | W3C validator |