MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmspropd Structured version   Visualization version   Unicode version

Theorem tsmspropd 21935
Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 17316 etc. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmspropd.f  |-  ( ph  ->  F  e.  V )
tsmspropd.g  |-  ( ph  ->  G  e.  W )
tsmspropd.h  |-  ( ph  ->  H  e.  X )
tsmspropd.b  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
tsmspropd.p  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
tsmspropd.j  |-  ( ph  ->  ( TopOpen `  G )  =  ( TopOpen `  H
) )
Assertion
Ref Expression
tsmspropd  |-  ( ph  ->  ( G tsums  F )  =  ( H tsums  F
) )

Proof of Theorem tsmspropd
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmspropd.j . . . 4  |-  ( ph  ->  ( TopOpen `  G )  =  ( TopOpen `  H
) )
21oveq1d 6665 . . 3  |-  ( ph  ->  ( ( TopOpen `  G
)  fLimf  ( ( ~P
dom  F  i^i  Fin ) filGen ran  ( z  e.  ( ~P dom  F  i^i  Fin )  |->  { y  e.  ( ~P dom  F  i^i  Fin )  |  z  C_  y }
) ) )  =  ( ( TopOpen `  H
)  fLimf  ( ( ~P
dom  F  i^i  Fin ) filGen ran  ( z  e.  ( ~P dom  F  i^i  Fin )  |->  { y  e.  ( ~P dom  F  i^i  Fin )  |  z  C_  y }
) ) ) )
3 tsmspropd.f . . . . . 6  |-  ( ph  ->  F  e.  V )
4 resexg 5442 . . . . . 6  |-  ( F  e.  V  ->  ( F  |`  y )  e. 
_V )
53, 4syl 17 . . . . 5  |-  ( ph  ->  ( F  |`  y
)  e.  _V )
6 tsmspropd.g . . . . 5  |-  ( ph  ->  G  e.  W )
7 tsmspropd.h . . . . 5  |-  ( ph  ->  H  e.  X )
8 tsmspropd.b . . . . 5  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
9 tsmspropd.p . . . . 5  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
105, 6, 7, 8, 9gsumpropd 17272 . . . 4  |-  ( ph  ->  ( G  gsumg  ( F  |`  y
) )  =  ( H  gsumg  ( F  |`  y
) ) )
1110mpteq2dv 4745 . . 3  |-  ( ph  ->  ( y  e.  ( ~P dom  F  i^i  Fin )  |->  ( G  gsumg  ( F  |`  y ) ) )  =  ( y  e.  ( ~P dom  F  i^i  Fin )  |->  ( H 
gsumg  ( F  |`  y ) ) ) )
122, 11fveq12d 6197 . 2  |-  ( ph  ->  ( ( ( TopOpen `  G )  fLimf  ( ( ~P dom  F  i^i  Fin ) filGen ran  ( z  e.  ( ~P dom  F  i^i  Fin )  |->  { y  e.  ( ~P dom  F  i^i  Fin )  |  z  C_  y }
) ) ) `  ( y  e.  ( ~P dom  F  i^i  Fin )  |->  ( G  gsumg  ( F  |`  y ) ) ) )  =  ( ( ( TopOpen `  H )  fLimf  ( ( ~P dom  F  i^i  Fin ) filGen ran  ( z  e.  ( ~P dom  F  i^i  Fin )  |->  { y  e.  ( ~P dom  F  i^i  Fin )  |  z 
C_  y } ) ) ) `  (
y  e.  ( ~P
dom  F  i^i  Fin )  |->  ( H  gsumg  ( F  |`  y
) ) ) ) )
13 eqid 2622 . . 3  |-  ( Base `  G )  =  (
Base `  G )
14 eqid 2622 . . 3  |-  ( TopOpen `  G )  =  (
TopOpen `  G )
15 eqid 2622 . . 3  |-  ( ~P
dom  F  i^i  Fin )  =  ( ~P dom  F  i^i  Fin )
16 eqid 2622 . . 3  |-  ran  (
z  e.  ( ~P
dom  F  i^i  Fin )  |->  { y  e.  ( ~P dom  F  i^i  Fin )  |  z  C_  y } )  =  ran  ( z  e.  ( ~P dom  F  i^i  Fin )  |->  { y  e.  ( ~P dom  F  i^i  Fin )  |  z 
C_  y } )
17 eqidd 2623 . . 3  |-  ( ph  ->  dom  F  =  dom  F )
1813, 14, 15, 16, 6, 3, 17tsmsval2 21933 . 2  |-  ( ph  ->  ( G tsums  F )  =  ( ( (
TopOpen `  G )  fLimf  ( ( ~P dom  F  i^i  Fin ) filGen ran  (
z  e.  ( ~P
dom  F  i^i  Fin )  |->  { y  e.  ( ~P dom  F  i^i  Fin )  |  z  C_  y } ) ) ) `
 ( y  e.  ( ~P dom  F  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  y ) ) ) ) )
19 eqid 2622 . . 3  |-  ( Base `  H )  =  (
Base `  H )
20 eqid 2622 . . 3  |-  ( TopOpen `  H )  =  (
TopOpen `  H )
2119, 20, 15, 16, 7, 3, 17tsmsval2 21933 . 2  |-  ( ph  ->  ( H tsums  F )  =  ( ( (
TopOpen `  H )  fLimf  ( ( ~P dom  F  i^i  Fin ) filGen ran  (
z  e.  ( ~P
dom  F  i^i  Fin )  |->  { y  e.  ( ~P dom  F  i^i  Fin )  |  z  C_  y } ) ) ) `
 ( y  e.  ( ~P dom  F  i^i  Fin )  |->  ( H 
gsumg  ( F  |`  y ) ) ) ) )
2212, 18, 213eqtr4d 2666 1  |-  ( ph  ->  ( G tsums  F )  =  ( H tsums  F
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116   ` cfv 5888  (class class class)co 6650   Fincfn 7955   Basecbs 15857   +g cplusg 15941   TopOpenctopn 16082    gsumg cgsu 16101   filGencfg 19735    fLimf cflf 21739   tsums ctsu 21929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seq 12802  df-0g 16102  df-gsum 16103  df-tsms 21930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator