| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsmspropd | Structured version Visualization version Unicode version | ||
| Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 17316 etc. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| Ref | Expression |
|---|---|
| tsmspropd.f |
|
| tsmspropd.g |
|
| tsmspropd.h |
|
| tsmspropd.b |
|
| tsmspropd.p |
|
| tsmspropd.j |
|
| Ref | Expression |
|---|---|
| tsmspropd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmspropd.j |
. . . 4
| |
| 2 | 1 | oveq1d 6665 |
. . 3
|
| 3 | tsmspropd.f |
. . . . . 6
| |
| 4 | resexg 5442 |
. . . . . 6
| |
| 5 | 3, 4 | syl 17 |
. . . . 5
|
| 6 | tsmspropd.g |
. . . . 5
| |
| 7 | tsmspropd.h |
. . . . 5
| |
| 8 | tsmspropd.b |
. . . . 5
| |
| 9 | tsmspropd.p |
. . . . 5
| |
| 10 | 5, 6, 7, 8, 9 | gsumpropd 17272 |
. . . 4
|
| 11 | 10 | mpteq2dv 4745 |
. . 3
|
| 12 | 2, 11 | fveq12d 6197 |
. 2
|
| 13 | eqid 2622 |
. . 3
| |
| 14 | eqid 2622 |
. . 3
| |
| 15 | eqid 2622 |
. . 3
| |
| 16 | eqid 2622 |
. . 3
| |
| 17 | eqidd 2623 |
. . 3
| |
| 18 | 13, 14, 15, 16, 6, 3, 17 | tsmsval2 21933 |
. 2
|
| 19 | eqid 2622 |
. . 3
| |
| 20 | eqid 2622 |
. . 3
| |
| 21 | 19, 20, 15, 16, 7, 3, 17 | tsmsval2 21933 |
. 2
|
| 22 | 12, 18, 21 | 3eqtr4d 2666 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-seq 12802 df-0g 16102 df-gsum 16103 df-tsms 21930 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |