| Step | Hyp | Ref
| Expression |
| 1 | | sseq2 3627 |
. . . . . 6
⊢ (𝑦 = 𝑎 → (𝐶 ⊆ 𝑦 ↔ 𝐶 ⊆ 𝑎)) |
| 2 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑦 = 𝑎 → (𝐺‘𝑦) = (𝐺‘𝑎)) |
| 3 | 2 | sseq2d 3633 |
. . . . . 6
⊢ (𝑦 = 𝑎 → ((𝐺‘𝐶) ⊆ (𝐺‘𝑦) ↔ (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) |
| 4 | 1, 3 | imbi12d 334 |
. . . . 5
⊢ (𝑦 = 𝑎 → ((𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦)) ↔ (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)))) |
| 5 | 4 | imbi2d 330 |
. . . 4
⊢ (𝑦 = 𝑎 → (((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))) ↔ ((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))))) |
| 6 | | sseq2 3627 |
. . . . . 6
⊢ (𝑦 = 𝐷 → (𝐶 ⊆ 𝑦 ↔ 𝐶 ⊆ 𝐷)) |
| 7 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑦 = 𝐷 → (𝐺‘𝑦) = (𝐺‘𝐷)) |
| 8 | 7 | sseq2d 3633 |
. . . . . 6
⊢ (𝑦 = 𝐷 → ((𝐺‘𝐶) ⊆ (𝐺‘𝑦) ↔ (𝐺‘𝐶) ⊆ (𝐺‘𝐷))) |
| 9 | 6, 8 | imbi12d 334 |
. . . . 5
⊢ (𝑦 = 𝐷 → ((𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦)) ↔ (𝐶 ⊆ 𝐷 → (𝐺‘𝐶) ⊆ (𝐺‘𝐷)))) |
| 10 | 9 | imbi2d 330 |
. . . 4
⊢ (𝑦 = 𝐷 → (((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))) ↔ ((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝐷 → (𝐺‘𝐶) ⊆ (𝐺‘𝐷))))) |
| 11 | | r19.21v 2960 |
. . . . 5
⊢
(∀𝑎 ∈
𝑦 ((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) ↔ ((𝜑 ∧ 𝐶 ∈ On) → ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)))) |
| 12 | | simpllr 799 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) → 𝐶 ∈ On) |
| 13 | | simplr 792 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) → 𝑦 ∈ On) |
| 14 | | onsseleq 5765 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶 ⊆ 𝑦 ↔ (𝐶 ∈ 𝑦 ∨ 𝐶 = 𝑦))) |
| 15 | 12, 13, 14 | syl2anc 693 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) → (𝐶 ⊆ 𝑦 ↔ (𝐶 ∈ 𝑦 ∨ 𝐶 = 𝑦))) |
| 16 | | sseq2 3627 |
. . . . . . . . . . . . 13
⊢ (if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)) = if(𝑦 = ∪ 𝑦, if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)), ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)}, ∅))) → ((𝐺‘𝐶) ⊆ if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)) ↔ (𝐺‘𝐶) ⊆ if(𝑦 = ∪ 𝑦, if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)), ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)},
∅))))) |
| 17 | | sseq2 3627 |
. . . . . . . . . . . . 13
⊢ (((𝐺‘∪ 𝑦)
∪ if(((𝐺‘∪ 𝑦)
∪ {(𝐹‘∪ 𝑦)})
∈ 𝐴, {(𝐹‘∪ 𝑦)},
∅)) = if(𝑦 = ∪ 𝑦,
if(𝑦 = ∅, 𝐵, ∪
(𝐺 “ 𝑦)), ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)}, ∅))) → ((𝐺‘𝐶) ⊆ ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)}, ∅)) ↔ (𝐺‘𝐶) ⊆ if(𝑦 = ∪ 𝑦, if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)), ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)},
∅))))) |
| 18 | | ttukeylem.4 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom
𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom
𝑧)},
∅))))) |
| 19 | 18 | tfr1 7493 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐺 Fn On |
| 20 | 19 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → 𝐺 Fn On) |
| 21 | | simplr 792 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → 𝑦 ∈ On) |
| 22 | | onss 6990 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ On → 𝑦 ⊆ On) |
| 23 | 21, 22 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → 𝑦 ⊆ On) |
| 24 | | simprr 796 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → 𝐶 ∈ 𝑦) |
| 25 | | fnfvima 6496 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 Fn On ∧ 𝑦 ⊆ On ∧ 𝐶 ∈ 𝑦) → (𝐺‘𝐶) ∈ (𝐺 “ 𝑦)) |
| 26 | 20, 23, 24, 25 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → (𝐺‘𝐶) ∈ (𝐺 “ 𝑦)) |
| 27 | | elssuni 4467 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘𝐶) ∈ (𝐺 “ 𝑦) → (𝐺‘𝐶) ⊆ ∪
(𝐺 “ 𝑦)) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → (𝐺‘𝐶) ⊆ ∪
(𝐺 “ 𝑦)) |
| 29 | | n0i 3920 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 ∈ 𝑦 → ¬ 𝑦 = ∅) |
| 30 | | iffalse 4095 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑦 = ∅ → if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)) = ∪ (𝐺 “ 𝑦)) |
| 31 | 24, 29, 30 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)) = ∪ (𝐺 “ 𝑦)) |
| 32 | 28, 31 | sseqtr4d 3642 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → (𝐺‘𝐶) ⊆ if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦))) |
| 33 | 32 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) ∧ 𝑦 = ∪ 𝑦) → (𝐺‘𝐶) ⊆ if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦))) |
| 34 | | vuniex 6954 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑦
∈ V |
| 35 | 34 | sucid 5804 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑦
∈ suc ∪ 𝑦 |
| 36 | | eloni 5733 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ On → Ord 𝑦) |
| 37 | | orduniorsuc 7030 |
. . . . . . . . . . . . . . . . . 18
⊢ (Ord
𝑦 → (𝑦 = ∪
𝑦 ∨ 𝑦 = suc ∪ 𝑦)) |
| 38 | 21, 36, 37 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → (𝑦 = ∪ 𝑦 ∨ 𝑦 = suc ∪ 𝑦)) |
| 39 | 38 | orcanai 952 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) ∧ ¬ 𝑦 = ∪ 𝑦) → 𝑦 = suc ∪ 𝑦) |
| 40 | 35, 39 | syl5eleqr 2708 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) ∧ ¬ 𝑦 = ∪ 𝑦) → ∪ 𝑦
∈ 𝑦) |
| 41 | | simplrl 800 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) ∧ ¬ 𝑦 = ∪ 𝑦) → ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) |
| 42 | 24 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) ∧ ¬ 𝑦 = ∪ 𝑦) → 𝐶 ∈ 𝑦) |
| 43 | | elssuni 4467 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 ∈ 𝑦 → 𝐶 ⊆ ∪ 𝑦) |
| 44 | 42, 43 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) ∧ ¬ 𝑦 = ∪ 𝑦) → 𝐶 ⊆ ∪ 𝑦) |
| 45 | | sseq2 3627 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = ∪
𝑦 → (𝐶 ⊆ 𝑎 ↔ 𝐶 ⊆ ∪ 𝑦)) |
| 46 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = ∪
𝑦 → (𝐺‘𝑎) = (𝐺‘∪ 𝑦)) |
| 47 | 46 | sseq2d 3633 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = ∪
𝑦 → ((𝐺‘𝐶) ⊆ (𝐺‘𝑎) ↔ (𝐺‘𝐶) ⊆ (𝐺‘∪ 𝑦))) |
| 48 | 45, 47 | imbi12d 334 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = ∪
𝑦 → ((𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ↔ (𝐶 ⊆ ∪ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘∪ 𝑦)))) |
| 49 | 48 | rspcv 3305 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑦
∈ 𝑦 →
(∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) → (𝐶 ⊆ ∪ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘∪ 𝑦)))) |
| 50 | 40, 41, 44, 49 | syl3c 66 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) ∧ ¬ 𝑦 = ∪ 𝑦) → (𝐺‘𝐶) ⊆ (𝐺‘∪ 𝑦)) |
| 51 | | ssun1 3776 |
. . . . . . . . . . . . . 14
⊢ (𝐺‘∪ 𝑦)
⊆ ((𝐺‘∪ 𝑦)
∪ if(((𝐺‘∪ 𝑦)
∪ {(𝐹‘∪ 𝑦)})
∈ 𝐴, {(𝐹‘∪ 𝑦)},
∅)) |
| 52 | 50, 51 | syl6ss 3615 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) ∧ ¬ 𝑦 = ∪ 𝑦) → (𝐺‘𝐶) ⊆ ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)}, ∅))) |
| 53 | 16, 17, 33, 52 | ifbothda 4123 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → (𝐺‘𝐶) ⊆ if(𝑦 = ∪ 𝑦, if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)), ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)}, ∅)))) |
| 54 | | simplll 798 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → 𝜑) |
| 55 | | ttukeylem.1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:(card‘(∪
𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) |
| 56 | | ttukeylem.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| 57 | | ttukeylem.3 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) |
| 58 | 55, 56, 57, 18 | ttukeylem3 9333 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ On) → (𝐺‘𝑦) = if(𝑦 = ∪ 𝑦, if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)), ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)}, ∅)))) |
| 59 | 54, 21, 58 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → (𝐺‘𝑦) = if(𝑦 = ∪ 𝑦, if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)), ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)}, ∅)))) |
| 60 | 53, 59 | sseqtr4d 3642 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → (𝐺‘𝐶) ⊆ (𝐺‘𝑦)) |
| 61 | 60 | expr 643 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) → (𝐶 ∈ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))) |
| 62 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝐶 = 𝑦 → (𝐺‘𝐶) = (𝐺‘𝑦)) |
| 63 | | eqimss 3657 |
. . . . . . . . . . . 12
⊢ ((𝐺‘𝐶) = (𝐺‘𝑦) → (𝐺‘𝐶) ⊆ (𝐺‘𝑦)) |
| 64 | 62, 63 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐶 = 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦)) |
| 65 | 64 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) → (𝐶 = 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))) |
| 66 | 61, 65 | jaod 395 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) → ((𝐶 ∈ 𝑦 ∨ 𝐶 = 𝑦) → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))) |
| 67 | 15, 66 | sylbid 230 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) → (𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))) |
| 68 | 67 | ex 450 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) → (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) → (𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦)))) |
| 69 | 68 | expcom 451 |
. . . . . 6
⊢ (𝑦 ∈ On → ((𝜑 ∧ 𝐶 ∈ On) → (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) → (𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))))) |
| 70 | 69 | a2d 29 |
. . . . 5
⊢ (𝑦 ∈ On → (((𝜑 ∧ 𝐶 ∈ On) → ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) → ((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))))) |
| 71 | 11, 70 | syl5bi 232 |
. . . 4
⊢ (𝑦 ∈ On → (∀𝑎 ∈ 𝑦 ((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) → ((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))))) |
| 72 | 5, 10, 71 | tfis3 7057 |
. . 3
⊢ (𝐷 ∈ On → ((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝐷 → (𝐺‘𝐶) ⊆ (𝐺‘𝐷)))) |
| 73 | 72 | expdcom 455 |
. 2
⊢ (𝜑 → (𝐶 ∈ On → (𝐷 ∈ On → (𝐶 ⊆ 𝐷 → (𝐺‘𝐶) ⊆ (𝐺‘𝐷))))) |
| 74 | 73 | 3imp2 1282 |
1
⊢ ((𝜑 ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝐶 ⊆ 𝐷)) → (𝐺‘𝐶) ⊆ (𝐺‘𝐷)) |