MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem3 Structured version   Visualization version   GIF version

Theorem ttukeylem3 9333
Description: Lemma for ttukey 9340. (Contributed by Mario Carneiro, 11-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem3 ((𝜑𝐶 ∈ On) → (𝐺𝐶) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
Distinct variable groups:   𝑥,𝑧,𝐶   𝑥,𝐺,𝑧   𝜑,𝑧   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧   𝑥,𝐹,𝑧
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem3
StepHypRef Expression
1 ttukeylem.4 . . . 4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
21tfr2 7494 . . 3 (𝐶 ∈ On → (𝐺𝐶) = ((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))))‘(𝐺𝐶)))
32adantl 482 . 2 ((𝜑𝐶 ∈ On) → (𝐺𝐶) = ((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))))‘(𝐺𝐶)))
4 eqidd 2623 . . 3 ((𝜑𝐶 ∈ On) → (𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))) = (𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
5 simpr 477 . . . . . . . 8 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → 𝑧 = (𝐺𝐶))
65dmeqd 5326 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → dom 𝑧 = dom (𝐺𝐶))
71tfr1 7493 . . . . . . . . 9 𝐺 Fn On
8 onss 6990 . . . . . . . . . 10 (𝐶 ∈ On → 𝐶 ⊆ On)
98ad2antlr 763 . . . . . . . . 9 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → 𝐶 ⊆ On)
10 fnssres 6004 . . . . . . . . 9 ((𝐺 Fn On ∧ 𝐶 ⊆ On) → (𝐺𝐶) Fn 𝐶)
117, 9, 10sylancr 695 . . . . . . . 8 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (𝐺𝐶) Fn 𝐶)
12 fndm 5990 . . . . . . . 8 ((𝐺𝐶) Fn 𝐶 → dom (𝐺𝐶) = 𝐶)
1311, 12syl 17 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → dom (𝐺𝐶) = 𝐶)
146, 13eqtrd 2656 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → dom 𝑧 = 𝐶)
1514unieqd 4446 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → dom 𝑧 = 𝐶)
1614, 15eqeq12d 2637 . . . . 5 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (dom 𝑧 = dom 𝑧𝐶 = 𝐶))
1714eqeq1d 2624 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (dom 𝑧 = ∅ ↔ 𝐶 = ∅))
185rneqd 5353 . . . . . . . 8 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ran 𝑧 = ran (𝐺𝐶))
19 df-ima 5127 . . . . . . . 8 (𝐺𝐶) = ran (𝐺𝐶)
2018, 19syl6eqr 2674 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ran 𝑧 = (𝐺𝐶))
2120unieqd 4446 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ran 𝑧 = (𝐺𝐶))
2217, 21ifbieq2d 4111 . . . . 5 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(dom 𝑧 = ∅, 𝐵, ran 𝑧) = if(𝐶 = ∅, 𝐵, (𝐺𝐶)))
235, 15fveq12d 6197 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (𝑧 dom 𝑧) = ((𝐺𝐶)‘ 𝐶))
2415fveq2d 6195 . . . . . . . . . 10 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (𝐹 dom 𝑧) = (𝐹 𝐶))
2524sneqd 4189 . . . . . . . . 9 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → {(𝐹 dom 𝑧)} = {(𝐹 𝐶)})
2623, 25uneq12d 3768 . . . . . . . 8 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) = (((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}))
2726eleq1d 2686 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴 ↔ (((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴))
28 eqidd 2623 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ∅ = ∅)
2927, 25, 28ifbieq12d 4113 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅) = if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))
3023, 29uneq12d 3768 . . . . 5 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)) = (((𝐺𝐶)‘ 𝐶) ∪ if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)))
3116, 22, 30ifbieq12d 4113 . . . 4 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), (((𝐺𝐶)‘ 𝐶) ∪ if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
32 onuni 6993 . . . . . . . . . 10 (𝐶 ∈ On → 𝐶 ∈ On)
3332ad3antlr 767 . . . . . . . . 9 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 ∈ On)
34 sucidg 5803 . . . . . . . . 9 ( 𝐶 ∈ On → 𝐶 ∈ suc 𝐶)
3533, 34syl 17 . . . . . . . 8 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 ∈ suc 𝐶)
36 eloni 5733 . . . . . . . . . . 11 (𝐶 ∈ On → Ord 𝐶)
3736ad2antlr 763 . . . . . . . . . 10 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → Ord 𝐶)
38 orduniorsuc 7030 . . . . . . . . . 10 (Ord 𝐶 → (𝐶 = 𝐶𝐶 = suc 𝐶))
3937, 38syl 17 . . . . . . . . 9 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (𝐶 = 𝐶𝐶 = suc 𝐶))
4039orcanai 952 . . . . . . . 8 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 = suc 𝐶)
4135, 40eleqtrrd 2704 . . . . . . 7 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶𝐶)
42 fvres 6207 . . . . . . 7 ( 𝐶𝐶 → ((𝐺𝐶)‘ 𝐶) = (𝐺 𝐶))
4341, 42syl 17 . . . . . 6 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((𝐺𝐶)‘ 𝐶) = (𝐺 𝐶))
4443uneq1d 3766 . . . . . . . 8 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → (((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) = ((𝐺 𝐶) ∪ {(𝐹 𝐶)}))
4544eleq1d 2686 . . . . . . 7 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴 ↔ ((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴))
4645ifbid 4108 . . . . . 6 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅) = if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))
4743, 46uneq12d 3768 . . . . 5 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → (((𝐺𝐶)‘ 𝐶) ∪ if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)) = ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)))
4847ifeq2da 4117 . . . 4 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), (((𝐺𝐶)‘ 𝐶) ∪ if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
4931, 48eqtrd 2656 . . 3 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
50 fnfun 5988 . . . . 5 (𝐺 Fn On → Fun 𝐺)
517, 50ax-mp 5 . . . 4 Fun 𝐺
52 simpr 477 . . . 4 ((𝜑𝐶 ∈ On) → 𝐶 ∈ On)
53 resfunexg 6479 . . . 4 ((Fun 𝐺𝐶 ∈ On) → (𝐺𝐶) ∈ V)
5451, 52, 53sylancr 695 . . 3 ((𝜑𝐶 ∈ On) → (𝐺𝐶) ∈ V)
55 ttukeylem.2 . . . . . 6 (𝜑𝐵𝐴)
56 elex 3212 . . . . . 6 (𝐵𝐴𝐵 ∈ V)
5755, 56syl 17 . . . . 5 (𝜑𝐵 ∈ V)
58 funimaexg 5975 . . . . . . 7 ((Fun 𝐺𝐶 ∈ On) → (𝐺𝐶) ∈ V)
5951, 58mpan 706 . . . . . 6 (𝐶 ∈ On → (𝐺𝐶) ∈ V)
60 uniexg 6955 . . . . . 6 ((𝐺𝐶) ∈ V → (𝐺𝐶) ∈ V)
6159, 60syl 17 . . . . 5 (𝐶 ∈ On → (𝐺𝐶) ∈ V)
62 ifcl 4130 . . . . 5 ((𝐵 ∈ V ∧ (𝐺𝐶) ∈ V) → if(𝐶 = ∅, 𝐵, (𝐺𝐶)) ∈ V)
6357, 61, 62syl2an 494 . . . 4 ((𝜑𝐶 ∈ On) → if(𝐶 = ∅, 𝐵, (𝐺𝐶)) ∈ V)
64 fvex 6201 . . . . 5 (𝐺 𝐶) ∈ V
65 snex 4908 . . . . . 6 {(𝐹 𝐶)} ∈ V
66 0ex 4790 . . . . . 6 ∅ ∈ V
6765, 66ifex 4156 . . . . 5 if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅) ∈ V
6864, 67unex 6956 . . . 4 ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)) ∈ V
69 ifcl 4130 . . . 4 ((if(𝐶 = ∅, 𝐵, (𝐺𝐶)) ∈ V ∧ ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)) ∈ V) → if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))) ∈ V)
7063, 68, 69sylancl 694 . . 3 ((𝜑𝐶 ∈ On) → if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))) ∈ V)
714, 49, 54, 70fvmptd 6288 . 2 ((𝜑𝐶 ∈ On) → ((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))))‘(𝐺𝐶)) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
723, 71eqtrd 2656 1 ((𝜑𝐶 ∈ On) → (𝐺𝐶) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wal 1481   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158  {csn 4177   cuni 4436  cmpt 4729  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  Ord word 5722  Oncon0 5723  suc csuc 5725  Fun wfun 5882   Fn wfn 5883  1-1-ontowf1o 5887  cfv 5888  recscrecs 7467  Fincfn 7955  cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-wrecs 7407  df-recs 7468
This theorem is referenced by:  ttukeylem4  9334  ttukeylem5  9335  ttukeylem6  9336  ttukeylem7  9337
  Copyright terms: Public domain W3C validator