MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2pc Structured version   Visualization version   GIF version

Theorem cnmpt2pc 22727
Description: Piecewise definition of a continuous function on a real interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
cnmpt2pc.r 𝑅 = (topGen‘ran (,))
cnmpt2pc.m 𝑀 = (𝑅t (𝐴[,]𝐵))
cnmpt2pc.n 𝑁 = (𝑅t (𝐵[,]𝐶))
cnmpt2pc.o 𝑂 = (𝑅t (𝐴[,]𝐶))
cnmpt2pc.a (𝜑𝐴 ∈ ℝ)
cnmpt2pc.c (𝜑𝐶 ∈ ℝ)
cnmpt2pc.b (𝜑𝐵 ∈ (𝐴[,]𝐶))
cnmpt2pc.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt2pc.q ((𝜑 ∧ (𝑥 = 𝐵𝑦𝑋)) → 𝐷 = 𝐸)
cnmpt2pc.d (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋𝐷) ∈ ((𝑀 ×t 𝐽) Cn 𝐾))
cnmpt2pc.e (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋𝐸) ∈ ((𝑁 ×t 𝐽) Cn 𝐾))
Assertion
Ref Expression
cnmpt2pc (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑂 ×t 𝐽) Cn 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem cnmpt2pc
StepHypRef Expression
1 eqid 2622 . 2 (𝑂 ×t 𝐽) = (𝑂 ×t 𝐽)
2 eqid 2622 . 2 𝐾 = 𝐾
3 cnmpt2pc.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
4 cnmpt2pc.c . . . . . 6 (𝜑𝐶 ∈ ℝ)
5 iccssre 12255 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴[,]𝐶) ⊆ ℝ)
63, 4, 5syl2anc 693 . . . . 5 (𝜑 → (𝐴[,]𝐶) ⊆ ℝ)
7 cnmpt2pc.b . . . . . . . 8 (𝜑𝐵 ∈ (𝐴[,]𝐶))
86, 7sseldd 3604 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
9 icccld 22570 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
103, 8, 9syl2anc 693 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
11 cnmpt2pc.r . . . . . . 7 𝑅 = (topGen‘ran (,))
1211fveq2i 6194 . . . . . 6 (Clsd‘𝑅) = (Clsd‘(topGen‘ran (,)))
1310, 12syl6eleqr 2712 . . . . 5 (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘𝑅))
14 ssun1 3776 . . . . . 6 (𝐴[,]𝐵) ⊆ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))
15 iccsplit 12305 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ (𝐴[,]𝐶)) → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)))
163, 4, 7, 15syl3anc 1326 . . . . . 6 (𝜑 → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)))
1714, 16syl5sseqr 3654 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ (𝐴[,]𝐶))
18 uniretop 22566 . . . . . . 7 ℝ = (topGen‘ran (,))
1911unieqi 4445 . . . . . . 7 𝑅 = (topGen‘ran (,))
2018, 19eqtr4i 2647 . . . . . 6 ℝ = 𝑅
2120restcldi 20977 . . . . 5 (((𝐴[,]𝐶) ⊆ ℝ ∧ (𝐴[,]𝐵) ∈ (Clsd‘𝑅) ∧ (𝐴[,]𝐵) ⊆ (𝐴[,]𝐶)) → (𝐴[,]𝐵) ∈ (Clsd‘(𝑅t (𝐴[,]𝐶))))
226, 13, 17, 21syl3anc 1326 . . . 4 (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘(𝑅t (𝐴[,]𝐶))))
23 cnmpt2pc.o . . . . 5 𝑂 = (𝑅t (𝐴[,]𝐶))
2423fveq2i 6194 . . . 4 (Clsd‘𝑂) = (Clsd‘(𝑅t (𝐴[,]𝐶)))
2522, 24syl6eleqr 2712 . . 3 (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘𝑂))
26 cnmpt2pc.j . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
27 toponuni 20719 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2826, 27syl 17 . . . 4 (𝜑𝑋 = 𝐽)
29 topontop 20718 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
30 eqid 2622 . . . . . 6 𝐽 = 𝐽
3130topcld 20839 . . . . 5 (𝐽 ∈ Top → 𝐽 ∈ (Clsd‘𝐽))
3226, 29, 313syl 18 . . . 4 (𝜑 𝐽 ∈ (Clsd‘𝐽))
3328, 32eqeltrd 2701 . . 3 (𝜑𝑋 ∈ (Clsd‘𝐽))
34 txcld 21406 . . 3 (((𝐴[,]𝐵) ∈ (Clsd‘𝑂) ∧ 𝑋 ∈ (Clsd‘𝐽)) → ((𝐴[,]𝐵) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽)))
3525, 33, 34syl2anc 693 . 2 (𝜑 → ((𝐴[,]𝐵) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽)))
36 icccld 22570 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ∈ (Clsd‘(topGen‘ran (,))))
378, 4, 36syl2anc 693 . . . . . 6 (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘(topGen‘ran (,))))
3837, 12syl6eleqr 2712 . . . . 5 (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘𝑅))
39 ssun2 3777 . . . . . 6 (𝐵[,]𝐶) ⊆ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))
4039, 16syl5sseqr 3654 . . . . 5 (𝜑 → (𝐵[,]𝐶) ⊆ (𝐴[,]𝐶))
4120restcldi 20977 . . . . 5 (((𝐴[,]𝐶) ⊆ ℝ ∧ (𝐵[,]𝐶) ∈ (Clsd‘𝑅) ∧ (𝐵[,]𝐶) ⊆ (𝐴[,]𝐶)) → (𝐵[,]𝐶) ∈ (Clsd‘(𝑅t (𝐴[,]𝐶))))
426, 38, 40, 41syl3anc 1326 . . . 4 (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘(𝑅t (𝐴[,]𝐶))))
4342, 24syl6eleqr 2712 . . 3 (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘𝑂))
44 txcld 21406 . . 3 (((𝐵[,]𝐶) ∈ (Clsd‘𝑂) ∧ 𝑋 ∈ (Clsd‘𝐽)) → ((𝐵[,]𝐶) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽)))
4543, 33, 44syl2anc 693 . 2 (𝜑 → ((𝐵[,]𝐶) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽)))
4616xpeq1d 5138 . . . 4 (𝜑 → ((𝐴[,]𝐶) × 𝑋) = (((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)) × 𝑋))
47 xpundir 5172 . . . 4 (((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)) × 𝑋) = (((𝐴[,]𝐵) × 𝑋) ∪ ((𝐵[,]𝐶) × 𝑋))
4846, 47syl6eq 2672 . . 3 (𝜑 → ((𝐴[,]𝐶) × 𝑋) = (((𝐴[,]𝐵) × 𝑋) ∪ ((𝐵[,]𝐶) × 𝑋)))
49 retopon 22567 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
5011, 49eqeltri 2697 . . . . . . 7 𝑅 ∈ (TopOn‘ℝ)
51 resttopon 20965 . . . . . . 7 ((𝑅 ∈ (TopOn‘ℝ) ∧ (𝐴[,]𝐶) ⊆ ℝ) → (𝑅t (𝐴[,]𝐶)) ∈ (TopOn‘(𝐴[,]𝐶)))
5250, 6, 51sylancr 695 . . . . . 6 (𝜑 → (𝑅t (𝐴[,]𝐶)) ∈ (TopOn‘(𝐴[,]𝐶)))
5323, 52syl5eqel 2705 . . . . 5 (𝜑𝑂 ∈ (TopOn‘(𝐴[,]𝐶)))
54 txtopon 21394 . . . . 5 ((𝑂 ∈ (TopOn‘(𝐴[,]𝐶)) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑂 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐶) × 𝑋)))
5553, 26, 54syl2anc 693 . . . 4 (𝜑 → (𝑂 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐶) × 𝑋)))
56 toponuni 20719 . . . 4 ((𝑂 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐶) × 𝑋)) → ((𝐴[,]𝐶) × 𝑋) = (𝑂 ×t 𝐽))
5755, 56syl 17 . . 3 (𝜑 → ((𝐴[,]𝐶) × 𝑋) = (𝑂 ×t 𝐽))
5848, 57eqtr3d 2658 . 2 (𝜑 → (((𝐴[,]𝐵) × 𝑋) ∪ ((𝐵[,]𝐶) × 𝑋)) = (𝑂 ×t 𝐽))
59 cnmpt2pc.m . . . . . . . . . 10 𝑀 = (𝑅t (𝐴[,]𝐵))
6017, 6sstrd 3613 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
61 resttopon 20965 . . . . . . . . . . 11 ((𝑅 ∈ (TopOn‘ℝ) ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝑅t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
6250, 60, 61sylancr 695 . . . . . . . . . 10 (𝜑 → (𝑅t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
6359, 62syl5eqel 2705 . . . . . . . . 9 (𝜑𝑀 ∈ (TopOn‘(𝐴[,]𝐵)))
64 txtopon 21394 . . . . . . . . 9 ((𝑀 ∈ (TopOn‘(𝐴[,]𝐵)) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑀 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐵) × 𝑋)))
6563, 26, 64syl2anc 693 . . . . . . . 8 (𝜑 → (𝑀 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐵) × 𝑋)))
66 cnmpt2pc.d . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋𝐷) ∈ ((𝑀 ×t 𝐽) Cn 𝐾))
67 cntop2 21045 . . . . . . . . . 10 ((𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋𝐷) ∈ ((𝑀 ×t 𝐽) Cn 𝐾) → 𝐾 ∈ Top)
6866, 67syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
692toptopon 20722 . . . . . . . . 9 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
7068, 69sylib 208 . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
71 elicc2 12238 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
723, 8, 71syl2anc 693 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
7372biimpa 501 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
7473simp3d 1075 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
75743adant3 1081 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑋) → 𝑥𝐵)
7675iftrued 4094 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑋) → if(𝑥𝐵, 𝐷, 𝐸) = 𝐷)
7776mpt2eq3dva 6719 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋𝐷))
7877, 66eqeltrd 2701 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑀 ×t 𝐽) Cn 𝐾))
79 cnf2 21053 . . . . . . . 8 (((𝑀 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐵) × 𝑋)) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑀 ×t 𝐽) Cn 𝐾)) → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐵) × 𝑋)⟶ 𝐾)
8065, 70, 78, 79syl3anc 1326 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐵) × 𝑋)⟶ 𝐾)
81 eqid 2622 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸))
8281fmpt2 7237 . . . . . . 7 (∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ↔ (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐵) × 𝑋)⟶ 𝐾)
8380, 82sylibr 224 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
84 cnmpt2pc.n . . . . . . . . . 10 𝑁 = (𝑅t (𝐵[,]𝐶))
8540, 6sstrd 3613 . . . . . . . . . . 11 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
86 resttopon 20965 . . . . . . . . . . 11 ((𝑅 ∈ (TopOn‘ℝ) ∧ (𝐵[,]𝐶) ⊆ ℝ) → (𝑅t (𝐵[,]𝐶)) ∈ (TopOn‘(𝐵[,]𝐶)))
8750, 85, 86sylancr 695 . . . . . . . . . 10 (𝜑 → (𝑅t (𝐵[,]𝐶)) ∈ (TopOn‘(𝐵[,]𝐶)))
8884, 87syl5eqel 2705 . . . . . . . . 9 (𝜑𝑁 ∈ (TopOn‘(𝐵[,]𝐶)))
89 txtopon 21394 . . . . . . . . 9 ((𝑁 ∈ (TopOn‘(𝐵[,]𝐶)) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑁 ×t 𝐽) ∈ (TopOn‘((𝐵[,]𝐶) × 𝑋)))
9088, 26, 89syl2anc 693 . . . . . . . 8 (𝜑 → (𝑁 ×t 𝐽) ∈ (TopOn‘((𝐵[,]𝐶) × 𝑋)))
91 elicc2 12238 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
928, 4, 91syl2anc 693 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
9392biimpa 501 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶))
9493simp2d 1074 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → 𝐵𝑥)
9594biantrud 528 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → (𝑥𝐵 ↔ (𝑥𝐵𝐵𝑥)))
9693simp1d 1073 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 ∈ ℝ)
978adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → 𝐵 ∈ ℝ)
9896, 97letri3d 10179 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → (𝑥 = 𝐵 ↔ (𝑥𝐵𝐵𝑥)))
9995, 98bitr4d 271 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → (𝑥𝐵𝑥 = 𝐵))
100993adant3 1081 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦𝑋) → (𝑥𝐵𝑥 = 𝐵))
101 cnmpt2pc.q . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥 = 𝐵𝑦𝑋)) → 𝐷 = 𝐸)
102101ancom2s 844 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑋𝑥 = 𝐵)) → 𝐷 = 𝐸)
103102ifeq1d 4104 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑋𝑥 = 𝐵)) → if(𝑥𝐵, 𝐷, 𝐸) = if(𝑥𝐵, 𝐸, 𝐸))
104 ifid 4125 . . . . . . . . . . . . . . 15 if(𝑥𝐵, 𝐸, 𝐸) = 𝐸
105103, 104syl6eq 2672 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑋𝑥 = 𝐵)) → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸)
106105expr 643 . . . . . . . . . . . . 13 ((𝜑𝑦𝑋) → (𝑥 = 𝐵 → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸))
1071063adant2 1080 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦𝑋) → (𝑥 = 𝐵 → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸))
108100, 107sylbid 230 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦𝑋) → (𝑥𝐵 → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸))
109 iffalse 4095 . . . . . . . . . . 11 𝑥𝐵 → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸)
110108, 109pm2.61d1 171 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦𝑋) → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸)
111110mpt2eq3dva 6719 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋𝐸))
112 cnmpt2pc.e . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋𝐸) ∈ ((𝑁 ×t 𝐽) Cn 𝐾))
113111, 112eqeltrd 2701 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑁 ×t 𝐽) Cn 𝐾))
114 cnf2 21053 . . . . . . . 8 (((𝑁 ×t 𝐽) ∈ (TopOn‘((𝐵[,]𝐶) × 𝑋)) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑁 ×t 𝐽) Cn 𝐾)) → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐵[,]𝐶) × 𝑋)⟶ 𝐾)
11590, 70, 113, 114syl3anc 1326 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐵[,]𝐶) × 𝑋)⟶ 𝐾)
116 eqid 2622 . . . . . . . 8 (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸))
117116fmpt2 7237 . . . . . . 7 (∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ↔ (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐵[,]𝐶) × 𝑋)⟶ 𝐾)
118115, 117sylibr 224 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
119 ralun 3795 . . . . . 6 ((∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ∧ ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾) → ∀𝑥 ∈ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
12083, 118, 119syl2anc 693 . . . . 5 (𝜑 → ∀𝑥 ∈ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
12116raleqdv 3144 . . . . 5 (𝜑 → (∀𝑥 ∈ (𝐴[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ↔ ∀𝑥 ∈ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾))
122120, 121mpbird 247 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
123 eqid 2622 . . . . 5 (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸))
124123fmpt2 7237 . . . 4 (∀𝑥 ∈ (𝐴[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ↔ (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐶) × 𝑋)⟶ 𝐾)
125122, 124sylib 208 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐶) × 𝑋)⟶ 𝐾)
12657feq2d 6031 . . 3 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐶) × 𝑋)⟶ 𝐾 ↔ (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)): (𝑂 ×t 𝐽)⟶ 𝐾))
127125, 126mpbid 222 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)): (𝑂 ×t 𝐽)⟶ 𝐾)
128 ssid 3624 . . . 4 𝑋𝑋
129 resmpt2 6758 . . . 4 (((𝐴[,]𝐵) ⊆ (𝐴[,]𝐶) ∧ 𝑋𝑋) → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐴[,]𝐵) × 𝑋)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)))
13017, 128, 129sylancl 694 . . 3 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐴[,]𝐵) × 𝑋)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)))
131 retop 22565 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
13211, 131eqeltri 2697 . . . . . . . . 9 𝑅 ∈ Top
133 ovex 6678 . . . . . . . . 9 (𝐴[,]𝐶) ∈ V
134 resttop 20964 . . . . . . . . 9 ((𝑅 ∈ Top ∧ (𝐴[,]𝐶) ∈ V) → (𝑅t (𝐴[,]𝐶)) ∈ Top)
135132, 133, 134mp2an 708 . . . . . . . 8 (𝑅t (𝐴[,]𝐶)) ∈ Top
13623, 135eqeltri 2697 . . . . . . 7 𝑂 ∈ Top
137136a1i 11 . . . . . 6 (𝜑𝑂 ∈ Top)
138 ovexd 6680 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ∈ V)
139 txrest 21434 . . . . . 6 (((𝑂 ∈ Top ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ ((𝐴[,]𝐵) ∈ V ∧ 𝑋 ∈ (Clsd‘𝐽))) → ((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) = ((𝑂t (𝐴[,]𝐵)) ×t (𝐽t 𝑋)))
140137, 26, 138, 33, 139syl22anc 1327 . . . . 5 (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) = ((𝑂t (𝐴[,]𝐵)) ×t (𝐽t 𝑋)))
141132a1i 11 . . . . . . . 8 (𝜑𝑅 ∈ Top)
142 ovexd 6680 . . . . . . . 8 (𝜑 → (𝐴[,]𝐶) ∈ V)
143 restabs 20969 . . . . . . . 8 ((𝑅 ∈ Top ∧ (𝐴[,]𝐵) ⊆ (𝐴[,]𝐶) ∧ (𝐴[,]𝐶) ∈ V) → ((𝑅t (𝐴[,]𝐶)) ↾t (𝐴[,]𝐵)) = (𝑅t (𝐴[,]𝐵)))
144141, 17, 142, 143syl3anc 1326 . . . . . . 7 (𝜑 → ((𝑅t (𝐴[,]𝐶)) ↾t (𝐴[,]𝐵)) = (𝑅t (𝐴[,]𝐵)))
14523oveq1i 6660 . . . . . . 7 (𝑂t (𝐴[,]𝐵)) = ((𝑅t (𝐴[,]𝐶)) ↾t (𝐴[,]𝐵))
146144, 145, 593eqtr4g 2681 . . . . . 6 (𝜑 → (𝑂t (𝐴[,]𝐵)) = 𝑀)
14728oveq2d 6666 . . . . . . 7 (𝜑 → (𝐽t 𝑋) = (𝐽t 𝐽))
14830restid 16094 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → (𝐽t 𝐽) = 𝐽)
14926, 148syl 17 . . . . . . 7 (𝜑 → (𝐽t 𝐽) = 𝐽)
150147, 149eqtrd 2656 . . . . . 6 (𝜑 → (𝐽t 𝑋) = 𝐽)
151146, 150oveq12d 6668 . . . . 5 (𝜑 → ((𝑂t (𝐴[,]𝐵)) ×t (𝐽t 𝑋)) = (𝑀 ×t 𝐽))
152140, 151eqtrd 2656 . . . 4 (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) = (𝑀 ×t 𝐽))
153152oveq1d 6665 . . 3 (𝜑 → (((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) Cn 𝐾) = ((𝑀 ×t 𝐽) Cn 𝐾))
15478, 130, 1533eltr4d 2716 . 2 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐴[,]𝐵) × 𝑋)) ∈ (((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) Cn 𝐾))
155 resmpt2 6758 . . . 4 (((𝐵[,]𝐶) ⊆ (𝐴[,]𝐶) ∧ 𝑋𝑋) → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐵[,]𝐶) × 𝑋)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)))
15640, 128, 155sylancl 694 . . 3 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐵[,]𝐶) × 𝑋)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)))
157 ovexd 6680 . . . . . 6 (𝜑 → (𝐵[,]𝐶) ∈ V)
158 txrest 21434 . . . . . 6 (((𝑂 ∈ Top ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ ((𝐵[,]𝐶) ∈ V ∧ 𝑋 ∈ (Clsd‘𝐽))) → ((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) = ((𝑂t (𝐵[,]𝐶)) ×t (𝐽t 𝑋)))
159137, 26, 157, 33, 158syl22anc 1327 . . . . 5 (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) = ((𝑂t (𝐵[,]𝐶)) ×t (𝐽t 𝑋)))
160 restabs 20969 . . . . . . . 8 ((𝑅 ∈ Top ∧ (𝐵[,]𝐶) ⊆ (𝐴[,]𝐶) ∧ (𝐴[,]𝐶) ∈ V) → ((𝑅t (𝐴[,]𝐶)) ↾t (𝐵[,]𝐶)) = (𝑅t (𝐵[,]𝐶)))
161141, 40, 142, 160syl3anc 1326 . . . . . . 7 (𝜑 → ((𝑅t (𝐴[,]𝐶)) ↾t (𝐵[,]𝐶)) = (𝑅t (𝐵[,]𝐶)))
16223oveq1i 6660 . . . . . . 7 (𝑂t (𝐵[,]𝐶)) = ((𝑅t (𝐴[,]𝐶)) ↾t (𝐵[,]𝐶))
163161, 162, 843eqtr4g 2681 . . . . . 6 (𝜑 → (𝑂t (𝐵[,]𝐶)) = 𝑁)
164163, 150oveq12d 6668 . . . . 5 (𝜑 → ((𝑂t (𝐵[,]𝐶)) ×t (𝐽t 𝑋)) = (𝑁 ×t 𝐽))
165159, 164eqtrd 2656 . . . 4 (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) = (𝑁 ×t 𝐽))
166165oveq1d 6665 . . 3 (𝜑 → (((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) Cn 𝐾) = ((𝑁 ×t 𝐽) Cn 𝐾))
167113, 156, 1663eltr4d 2716 . 2 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐵[,]𝐶) × 𝑋)) ∈ (((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) Cn 𝐾))
1681, 2, 35, 45, 58, 127, 154, 167paste 21098 1 (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑂 ×t 𝐽) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cun 3572  wss 3574  ifcif 4086   cuni 4436   class class class wbr 4653   × cxp 5112  ran crn 5115  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  cr 9935  cle 10075  (,)cioo 12175  [,]cicc 12178  t crest 16081  topGenctg 16098  Topctop 20698  TopOnctopon 20715  Clsdccld 20820   Cn ccn 21028   ×t ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-ioo 12179  df-icc 12182  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-cn 21031  df-tx 21365
This theorem is referenced by:  htpycc  22779  pcocn  22817  pcohtpylem  22819  pcopt  22822  pcopt2  22823  pcoass  22824  pcorevlem  22826
  Copyright terms: Public domain W3C validator