Proof of Theorem cnmpt2pc
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. 2
⊢ ∪ (𝑂
×t 𝐽) =
∪ (𝑂 ×t 𝐽) |
| 2 | | eqid 2622 |
. 2
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 3 | | cnmpt2pc.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 4 | | cnmpt2pc.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 5 | | iccssre 12255 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴[,]𝐶) ⊆ ℝ) |
| 6 | 3, 4, 5 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (𝐴[,]𝐶) ⊆ ℝ) |
| 7 | | cnmpt2pc.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐶)) |
| 8 | 6, 7 | sseldd 3604 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 9 | | icccld 22570 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran
(,)))) |
| 10 | 3, 8, 9 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran
(,)))) |
| 11 | | cnmpt2pc.r |
. . . . . . 7
⊢ 𝑅 = (topGen‘ran
(,)) |
| 12 | 11 | fveq2i 6194 |
. . . . . 6
⊢
(Clsd‘𝑅) =
(Clsd‘(topGen‘ran (,))) |
| 13 | 10, 12 | syl6eleqr 2712 |
. . . . 5
⊢ (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘𝑅)) |
| 14 | | ssun1 3776 |
. . . . . 6
⊢ (𝐴[,]𝐵) ⊆ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)) |
| 15 | | iccsplit 12305 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ (𝐴[,]𝐶)) → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))) |
| 16 | 3, 4, 7, 15 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))) |
| 17 | 14, 16 | syl5sseqr 3654 |
. . . . 5
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (𝐴[,]𝐶)) |
| 18 | | uniretop 22566 |
. . . . . . 7
⊢ ℝ =
∪ (topGen‘ran (,)) |
| 19 | 11 | unieqi 4445 |
. . . . . . 7
⊢ ∪ 𝑅 =
∪ (topGen‘ran (,)) |
| 20 | 18, 19 | eqtr4i 2647 |
. . . . . 6
⊢ ℝ =
∪ 𝑅 |
| 21 | 20 | restcldi 20977 |
. . . . 5
⊢ (((𝐴[,]𝐶) ⊆ ℝ ∧ (𝐴[,]𝐵) ∈ (Clsd‘𝑅) ∧ (𝐴[,]𝐵) ⊆ (𝐴[,]𝐶)) → (𝐴[,]𝐵) ∈ (Clsd‘(𝑅 ↾t (𝐴[,]𝐶)))) |
| 22 | 6, 13, 17, 21 | syl3anc 1326 |
. . . 4
⊢ (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘(𝑅 ↾t (𝐴[,]𝐶)))) |
| 23 | | cnmpt2pc.o |
. . . . 5
⊢ 𝑂 = (𝑅 ↾t (𝐴[,]𝐶)) |
| 24 | 23 | fveq2i 6194 |
. . . 4
⊢
(Clsd‘𝑂) =
(Clsd‘(𝑅
↾t (𝐴[,]𝐶))) |
| 25 | 22, 24 | syl6eleqr 2712 |
. . 3
⊢ (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘𝑂)) |
| 26 | | cnmpt2pc.j |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 27 | | toponuni 20719 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 28 | 26, 27 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 29 | | topontop 20718 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 30 | | eqid 2622 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 31 | 30 | topcld 20839 |
. . . . 5
⊢ (𝐽 ∈ Top → ∪ 𝐽
∈ (Clsd‘𝐽)) |
| 32 | 26, 29, 31 | 3syl 18 |
. . . 4
⊢ (𝜑 → ∪ 𝐽
∈ (Clsd‘𝐽)) |
| 33 | 28, 32 | eqeltrd 2701 |
. . 3
⊢ (𝜑 → 𝑋 ∈ (Clsd‘𝐽)) |
| 34 | | txcld 21406 |
. . 3
⊢ (((𝐴[,]𝐵) ∈ (Clsd‘𝑂) ∧ 𝑋 ∈ (Clsd‘𝐽)) → ((𝐴[,]𝐵) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽))) |
| 35 | 25, 33, 34 | syl2anc 693 |
. 2
⊢ (𝜑 → ((𝐴[,]𝐵) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽))) |
| 36 | | icccld 22570 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ∈ (Clsd‘(topGen‘ran
(,)))) |
| 37 | 8, 4, 36 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘(topGen‘ran
(,)))) |
| 38 | 37, 12 | syl6eleqr 2712 |
. . . . 5
⊢ (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘𝑅)) |
| 39 | | ssun2 3777 |
. . . . . 6
⊢ (𝐵[,]𝐶) ⊆ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)) |
| 40 | 39, 16 | syl5sseqr 3654 |
. . . . 5
⊢ (𝜑 → (𝐵[,]𝐶) ⊆ (𝐴[,]𝐶)) |
| 41 | 20 | restcldi 20977 |
. . . . 5
⊢ (((𝐴[,]𝐶) ⊆ ℝ ∧ (𝐵[,]𝐶) ∈ (Clsd‘𝑅) ∧ (𝐵[,]𝐶) ⊆ (𝐴[,]𝐶)) → (𝐵[,]𝐶) ∈ (Clsd‘(𝑅 ↾t (𝐴[,]𝐶)))) |
| 42 | 6, 38, 40, 41 | syl3anc 1326 |
. . . 4
⊢ (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘(𝑅 ↾t (𝐴[,]𝐶)))) |
| 43 | 42, 24 | syl6eleqr 2712 |
. . 3
⊢ (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘𝑂)) |
| 44 | | txcld 21406 |
. . 3
⊢ (((𝐵[,]𝐶) ∈ (Clsd‘𝑂) ∧ 𝑋 ∈ (Clsd‘𝐽)) → ((𝐵[,]𝐶) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽))) |
| 45 | 43, 33, 44 | syl2anc 693 |
. 2
⊢ (𝜑 → ((𝐵[,]𝐶) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽))) |
| 46 | 16 | xpeq1d 5138 |
. . . 4
⊢ (𝜑 → ((𝐴[,]𝐶) × 𝑋) = (((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)) × 𝑋)) |
| 47 | | xpundir 5172 |
. . . 4
⊢ (((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)) × 𝑋) = (((𝐴[,]𝐵) × 𝑋) ∪ ((𝐵[,]𝐶) × 𝑋)) |
| 48 | 46, 47 | syl6eq 2672 |
. . 3
⊢ (𝜑 → ((𝐴[,]𝐶) × 𝑋) = (((𝐴[,]𝐵) × 𝑋) ∪ ((𝐵[,]𝐶) × 𝑋))) |
| 49 | | retopon 22567 |
. . . . . . . 8
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
| 50 | 11, 49 | eqeltri 2697 |
. . . . . . 7
⊢ 𝑅 ∈
(TopOn‘ℝ) |
| 51 | | resttopon 20965 |
. . . . . . 7
⊢ ((𝑅 ∈ (TopOn‘ℝ)
∧ (𝐴[,]𝐶) ⊆ ℝ) → (𝑅 ↾t (𝐴[,]𝐶)) ∈ (TopOn‘(𝐴[,]𝐶))) |
| 52 | 50, 6, 51 | sylancr 695 |
. . . . . 6
⊢ (𝜑 → (𝑅 ↾t (𝐴[,]𝐶)) ∈ (TopOn‘(𝐴[,]𝐶))) |
| 53 | 23, 52 | syl5eqel 2705 |
. . . . 5
⊢ (𝜑 → 𝑂 ∈ (TopOn‘(𝐴[,]𝐶))) |
| 54 | | txtopon 21394 |
. . . . 5
⊢ ((𝑂 ∈ (TopOn‘(𝐴[,]𝐶)) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑂 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐶) × 𝑋))) |
| 55 | 53, 26, 54 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (𝑂 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐶) × 𝑋))) |
| 56 | | toponuni 20719 |
. . . 4
⊢ ((𝑂 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐶) × 𝑋)) → ((𝐴[,]𝐶) × 𝑋) = ∪ (𝑂 ×t 𝐽)) |
| 57 | 55, 56 | syl 17 |
. . 3
⊢ (𝜑 → ((𝐴[,]𝐶) × 𝑋) = ∪ (𝑂 ×t 𝐽)) |
| 58 | 48, 57 | eqtr3d 2658 |
. 2
⊢ (𝜑 → (((𝐴[,]𝐵) × 𝑋) ∪ ((𝐵[,]𝐶) × 𝑋)) = ∪ (𝑂 ×t 𝐽)) |
| 59 | | cnmpt2pc.m |
. . . . . . . . . 10
⊢ 𝑀 = (𝑅 ↾t (𝐴[,]𝐵)) |
| 60 | 17, 6 | sstrd 3613 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 61 | | resttopon 20965 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ (TopOn‘ℝ)
∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝑅 ↾t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵))) |
| 62 | 50, 60, 61 | sylancr 695 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 ↾t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵))) |
| 63 | 59, 62 | syl5eqel 2705 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (TopOn‘(𝐴[,]𝐵))) |
| 64 | | txtopon 21394 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (TopOn‘(𝐴[,]𝐵)) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑀 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐵) × 𝑋))) |
| 65 | 63, 26, 64 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐵) × 𝑋))) |
| 66 | | cnmpt2pc.d |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝑋 ↦ 𝐷) ∈ ((𝑀 ×t 𝐽) Cn 𝐾)) |
| 67 | | cntop2 21045 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝑋 ↦ 𝐷) ∈ ((𝑀 ×t 𝐽) Cn 𝐾) → 𝐾 ∈ Top) |
| 68 | 66, 67 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Top) |
| 69 | 2 | toptopon 20722 |
. . . . . . . . 9
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 70 | 68, 69 | sylib 208 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 71 | | elicc2 12238 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
| 72 | 3, 8, 71 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
| 73 | 72 | biimpa 501 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 74 | 73 | simp3d 1075 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
| 75 | 74 | 3adant3 1081 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ 𝑋) → 𝑥 ≤ 𝐵) |
| 76 | 75 | iftrued 4094 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ 𝑋) → if(𝑥 ≤ 𝐵, 𝐷, 𝐸) = 𝐷) |
| 77 | 76 | mpt2eq3dva 6719 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝑋 ↦ 𝐷)) |
| 78 | 77, 66 | eqeltrd 2701 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) ∈ ((𝑀 ×t 𝐽) Cn 𝐾)) |
| 79 | | cnf2 21053 |
. . . . . . . 8
⊢ (((𝑀 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐵) × 𝑋)) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)
∧ (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) ∈ ((𝑀 ×t 𝐽) Cn 𝐾)) → (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)):((𝐴[,]𝐵) × 𝑋)⟶∪ 𝐾) |
| 80 | 65, 70, 78, 79 | syl3anc 1326 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)):((𝐴[,]𝐵) × 𝑋)⟶∪ 𝐾) |
| 81 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) |
| 82 | 81 | fmpt2 7237 |
. . . . . . 7
⊢
(∀𝑥 ∈
(𝐴[,]𝐵)∀𝑦 ∈ 𝑋 if(𝑥 ≤ 𝐵, 𝐷, 𝐸) ∈ ∪ 𝐾 ↔ (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)):((𝐴[,]𝐵) × 𝑋)⟶∪ 𝐾) |
| 83 | 80, 82 | sylibr 224 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ 𝑋 if(𝑥 ≤ 𝐵, 𝐷, 𝐸) ∈ ∪ 𝐾) |
| 84 | | cnmpt2pc.n |
. . . . . . . . . 10
⊢ 𝑁 = (𝑅 ↾t (𝐵[,]𝐶)) |
| 85 | 40, 6 | sstrd 3613 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵[,]𝐶) ⊆ ℝ) |
| 86 | | resttopon 20965 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ (TopOn‘ℝ)
∧ (𝐵[,]𝐶) ⊆ ℝ) → (𝑅 ↾t (𝐵[,]𝐶)) ∈ (TopOn‘(𝐵[,]𝐶))) |
| 87 | 50, 85, 86 | sylancr 695 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 ↾t (𝐵[,]𝐶)) ∈ (TopOn‘(𝐵[,]𝐶))) |
| 88 | 84, 87 | syl5eqel 2705 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (TopOn‘(𝐵[,]𝐶))) |
| 89 | | txtopon 21394 |
. . . . . . . . 9
⊢ ((𝑁 ∈ (TopOn‘(𝐵[,]𝐶)) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑁 ×t 𝐽) ∈ (TopOn‘((𝐵[,]𝐶) × 𝑋))) |
| 90 | 88, 26, 89 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 ×t 𝐽) ∈ (TopOn‘((𝐵[,]𝐶) × 𝑋))) |
| 91 | | elicc2 12238 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶))) |
| 92 | 8, 4, 91 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶))) |
| 93 | 92 | biimpa 501 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵[,]𝐶)) → (𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶)) |
| 94 | 93 | simp2d 1074 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵[,]𝐶)) → 𝐵 ≤ 𝑥) |
| 95 | 94 | biantrud 528 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵[,]𝐶)) → (𝑥 ≤ 𝐵 ↔ (𝑥 ≤ 𝐵 ∧ 𝐵 ≤ 𝑥))) |
| 96 | 93 | simp1d 1073 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 ∈ ℝ) |
| 97 | 8 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵[,]𝐶)) → 𝐵 ∈ ℝ) |
| 98 | 96, 97 | letri3d 10179 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵[,]𝐶)) → (𝑥 = 𝐵 ↔ (𝑥 ≤ 𝐵 ∧ 𝐵 ≤ 𝑥))) |
| 99 | 95, 98 | bitr4d 271 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵[,]𝐶)) → (𝑥 ≤ 𝐵 ↔ 𝑥 = 𝐵)) |
| 100 | 99 | 3adant3 1081 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦 ∈ 𝑋) → (𝑥 ≤ 𝐵 ↔ 𝑥 = 𝐵)) |
| 101 | | cnmpt2pc.q |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 = 𝐵 ∧ 𝑦 ∈ 𝑋)) → 𝐷 = 𝐸) |
| 102 | 101 | ancom2s 844 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑋 ∧ 𝑥 = 𝐵)) → 𝐷 = 𝐸) |
| 103 | 102 | ifeq1d 4104 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑋 ∧ 𝑥 = 𝐵)) → if(𝑥 ≤ 𝐵, 𝐷, 𝐸) = if(𝑥 ≤ 𝐵, 𝐸, 𝐸)) |
| 104 | | ifid 4125 |
. . . . . . . . . . . . . . 15
⊢ if(𝑥 ≤ 𝐵, 𝐸, 𝐸) = 𝐸 |
| 105 | 103, 104 | syl6eq 2672 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑋 ∧ 𝑥 = 𝐵)) → if(𝑥 ≤ 𝐵, 𝐷, 𝐸) = 𝐸) |
| 106 | 105 | expr 643 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑥 = 𝐵 → if(𝑥 ≤ 𝐵, 𝐷, 𝐸) = 𝐸)) |
| 107 | 106 | 3adant2 1080 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦 ∈ 𝑋) → (𝑥 = 𝐵 → if(𝑥 ≤ 𝐵, 𝐷, 𝐸) = 𝐸)) |
| 108 | 100, 107 | sylbid 230 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦 ∈ 𝑋) → (𝑥 ≤ 𝐵 → if(𝑥 ≤ 𝐵, 𝐷, 𝐸) = 𝐸)) |
| 109 | | iffalse 4095 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ≤ 𝐵 → if(𝑥 ≤ 𝐵, 𝐷, 𝐸) = 𝐸) |
| 110 | 108, 109 | pm2.61d1 171 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦 ∈ 𝑋) → if(𝑥 ≤ 𝐵, 𝐷, 𝐸) = 𝐸) |
| 111 | 110 | mpt2eq3dva 6719 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦 ∈ 𝑋 ↦ 𝐸)) |
| 112 | | cnmpt2pc.e |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦 ∈ 𝑋 ↦ 𝐸) ∈ ((𝑁 ×t 𝐽) Cn 𝐾)) |
| 113 | 111, 112 | eqeltrd 2701 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) ∈ ((𝑁 ×t 𝐽) Cn 𝐾)) |
| 114 | | cnf2 21053 |
. . . . . . . 8
⊢ (((𝑁 ×t 𝐽) ∈ (TopOn‘((𝐵[,]𝐶) × 𝑋)) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)
∧ (𝑥 ∈ (𝐵[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) ∈ ((𝑁 ×t 𝐽) Cn 𝐾)) → (𝑥 ∈ (𝐵[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)):((𝐵[,]𝐶) × 𝑋)⟶∪ 𝐾) |
| 115 | 90, 70, 113, 114 | syl3anc 1326 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)):((𝐵[,]𝐶) × 𝑋)⟶∪ 𝐾) |
| 116 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐵[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) |
| 117 | 116 | fmpt2 7237 |
. . . . . . 7
⊢
(∀𝑥 ∈
(𝐵[,]𝐶)∀𝑦 ∈ 𝑋 if(𝑥 ≤ 𝐵, 𝐷, 𝐸) ∈ ∪ 𝐾 ↔ (𝑥 ∈ (𝐵[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)):((𝐵[,]𝐶) × 𝑋)⟶∪ 𝐾) |
| 118 | 115, 117 | sylibr 224 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ 𝑋 if(𝑥 ≤ 𝐵, 𝐷, 𝐸) ∈ ∪ 𝐾) |
| 119 | | ralun 3795 |
. . . . . 6
⊢
((∀𝑥 ∈
(𝐴[,]𝐵)∀𝑦 ∈ 𝑋 if(𝑥 ≤ 𝐵, 𝐷, 𝐸) ∈ ∪ 𝐾 ∧ ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ 𝑋 if(𝑥 ≤ 𝐵, 𝐷, 𝐸) ∈ ∪ 𝐾) → ∀𝑥 ∈ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))∀𝑦 ∈ 𝑋 if(𝑥 ≤ 𝐵, 𝐷, 𝐸) ∈ ∪ 𝐾) |
| 120 | 83, 118, 119 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))∀𝑦 ∈ 𝑋 if(𝑥 ≤ 𝐵, 𝐷, 𝐸) ∈ ∪ 𝐾) |
| 121 | 16 | raleqdv 3144 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ (𝐴[,]𝐶)∀𝑦 ∈ 𝑋 if(𝑥 ≤ 𝐵, 𝐷, 𝐸) ∈ ∪ 𝐾 ↔ ∀𝑥 ∈ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))∀𝑦 ∈ 𝑋 if(𝑥 ≤ 𝐵, 𝐷, 𝐸) ∈ ∪ 𝐾)) |
| 122 | 120, 121 | mpbird 247 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐶)∀𝑦 ∈ 𝑋 if(𝑥 ≤ 𝐵, 𝐷, 𝐸) ∈ ∪ 𝐾) |
| 123 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ (𝐴[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐴[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) |
| 124 | 123 | fmpt2 7237 |
. . . 4
⊢
(∀𝑥 ∈
(𝐴[,]𝐶)∀𝑦 ∈ 𝑋 if(𝑥 ≤ 𝐵, 𝐷, 𝐸) ∈ ∪ 𝐾 ↔ (𝑥 ∈ (𝐴[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)):((𝐴[,]𝐶) × 𝑋)⟶∪ 𝐾) |
| 125 | 122, 124 | sylib 208 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)):((𝐴[,]𝐶) × 𝑋)⟶∪ 𝐾) |
| 126 | 57 | feq2d 6031 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)):((𝐴[,]𝐶) × 𝑋)⟶∪ 𝐾 ↔ (𝑥 ∈ (𝐴[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)):∪ (𝑂 ×t 𝐽)⟶∪ 𝐾)) |
| 127 | 125, 126 | mpbid 222 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)):∪ (𝑂 ×t 𝐽)⟶∪ 𝐾) |
| 128 | | ssid 3624 |
. . . 4
⊢ 𝑋 ⊆ 𝑋 |
| 129 | | resmpt2 6758 |
. . . 4
⊢ (((𝐴[,]𝐵) ⊆ (𝐴[,]𝐶) ∧ 𝑋 ⊆ 𝑋) → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) ↾ ((𝐴[,]𝐵) × 𝑋)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸))) |
| 130 | 17, 128, 129 | sylancl 694 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) ↾ ((𝐴[,]𝐵) × 𝑋)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸))) |
| 131 | | retop 22565 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) ∈ Top |
| 132 | 11, 131 | eqeltri 2697 |
. . . . . . . . 9
⊢ 𝑅 ∈ Top |
| 133 | | ovex 6678 |
. . . . . . . . 9
⊢ (𝐴[,]𝐶) ∈ V |
| 134 | | resttop 20964 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Top ∧ (𝐴[,]𝐶) ∈ V) → (𝑅 ↾t (𝐴[,]𝐶)) ∈ Top) |
| 135 | 132, 133,
134 | mp2an 708 |
. . . . . . . 8
⊢ (𝑅 ↾t (𝐴[,]𝐶)) ∈ Top |
| 136 | 23, 135 | eqeltri 2697 |
. . . . . . 7
⊢ 𝑂 ∈ Top |
| 137 | 136 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑂 ∈ Top) |
| 138 | | ovexd 6680 |
. . . . . 6
⊢ (𝜑 → (𝐴[,]𝐵) ∈ V) |
| 139 | | txrest 21434 |
. . . . . 6
⊢ (((𝑂 ∈ Top ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ ((𝐴[,]𝐵) ∈ V ∧ 𝑋 ∈ (Clsd‘𝐽))) → ((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) = ((𝑂 ↾t (𝐴[,]𝐵)) ×t (𝐽 ↾t 𝑋))) |
| 140 | 137, 26, 138, 33, 139 | syl22anc 1327 |
. . . . 5
⊢ (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) = ((𝑂 ↾t (𝐴[,]𝐵)) ×t (𝐽 ↾t 𝑋))) |
| 141 | 132 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Top) |
| 142 | | ovexd 6680 |
. . . . . . . 8
⊢ (𝜑 → (𝐴[,]𝐶) ∈ V) |
| 143 | | restabs 20969 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ (𝐴[,]𝐵) ⊆ (𝐴[,]𝐶) ∧ (𝐴[,]𝐶) ∈ V) → ((𝑅 ↾t (𝐴[,]𝐶)) ↾t (𝐴[,]𝐵)) = (𝑅 ↾t (𝐴[,]𝐵))) |
| 144 | 141, 17, 142, 143 | syl3anc 1326 |
. . . . . . 7
⊢ (𝜑 → ((𝑅 ↾t (𝐴[,]𝐶)) ↾t (𝐴[,]𝐵)) = (𝑅 ↾t (𝐴[,]𝐵))) |
| 145 | 23 | oveq1i 6660 |
. . . . . . 7
⊢ (𝑂 ↾t (𝐴[,]𝐵)) = ((𝑅 ↾t (𝐴[,]𝐶)) ↾t (𝐴[,]𝐵)) |
| 146 | 144, 145,
59 | 3eqtr4g 2681 |
. . . . . 6
⊢ (𝜑 → (𝑂 ↾t (𝐴[,]𝐵)) = 𝑀) |
| 147 | 28 | oveq2d 6666 |
. . . . . . 7
⊢ (𝜑 → (𝐽 ↾t 𝑋) = (𝐽 ↾t ∪ 𝐽)) |
| 148 | 30 | restid 16094 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ↾t ∪ 𝐽) =
𝐽) |
| 149 | 26, 148 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐽 ↾t ∪ 𝐽) =
𝐽) |
| 150 | 147, 149 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → (𝐽 ↾t 𝑋) = 𝐽) |
| 151 | 146, 150 | oveq12d 6668 |
. . . . 5
⊢ (𝜑 → ((𝑂 ↾t (𝐴[,]𝐵)) ×t (𝐽 ↾t 𝑋)) = (𝑀 ×t 𝐽)) |
| 152 | 140, 151 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) = (𝑀 ×t 𝐽)) |
| 153 | 152 | oveq1d 6665 |
. . 3
⊢ (𝜑 → (((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) Cn 𝐾) = ((𝑀 ×t 𝐽) Cn 𝐾)) |
| 154 | 78, 130, 153 | 3eltr4d 2716 |
. 2
⊢ (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) ↾ ((𝐴[,]𝐵) × 𝑋)) ∈ (((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) Cn 𝐾)) |
| 155 | | resmpt2 6758 |
. . . 4
⊢ (((𝐵[,]𝐶) ⊆ (𝐴[,]𝐶) ∧ 𝑋 ⊆ 𝑋) → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) ↾ ((𝐵[,]𝐶) × 𝑋)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸))) |
| 156 | 40, 128, 155 | sylancl 694 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) ↾ ((𝐵[,]𝐶) × 𝑋)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸))) |
| 157 | | ovexd 6680 |
. . . . . 6
⊢ (𝜑 → (𝐵[,]𝐶) ∈ V) |
| 158 | | txrest 21434 |
. . . . . 6
⊢ (((𝑂 ∈ Top ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ ((𝐵[,]𝐶) ∈ V ∧ 𝑋 ∈ (Clsd‘𝐽))) → ((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) = ((𝑂 ↾t (𝐵[,]𝐶)) ×t (𝐽 ↾t 𝑋))) |
| 159 | 137, 26, 157, 33, 158 | syl22anc 1327 |
. . . . 5
⊢ (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) = ((𝑂 ↾t (𝐵[,]𝐶)) ×t (𝐽 ↾t 𝑋))) |
| 160 | | restabs 20969 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ (𝐵[,]𝐶) ⊆ (𝐴[,]𝐶) ∧ (𝐴[,]𝐶) ∈ V) → ((𝑅 ↾t (𝐴[,]𝐶)) ↾t (𝐵[,]𝐶)) = (𝑅 ↾t (𝐵[,]𝐶))) |
| 161 | 141, 40, 142, 160 | syl3anc 1326 |
. . . . . . 7
⊢ (𝜑 → ((𝑅 ↾t (𝐴[,]𝐶)) ↾t (𝐵[,]𝐶)) = (𝑅 ↾t (𝐵[,]𝐶))) |
| 162 | 23 | oveq1i 6660 |
. . . . . . 7
⊢ (𝑂 ↾t (𝐵[,]𝐶)) = ((𝑅 ↾t (𝐴[,]𝐶)) ↾t (𝐵[,]𝐶)) |
| 163 | 161, 162,
84 | 3eqtr4g 2681 |
. . . . . 6
⊢ (𝜑 → (𝑂 ↾t (𝐵[,]𝐶)) = 𝑁) |
| 164 | 163, 150 | oveq12d 6668 |
. . . . 5
⊢ (𝜑 → ((𝑂 ↾t (𝐵[,]𝐶)) ×t (𝐽 ↾t 𝑋)) = (𝑁 ×t 𝐽)) |
| 165 | 159, 164 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) = (𝑁 ×t 𝐽)) |
| 166 | 165 | oveq1d 6665 |
. . 3
⊢ (𝜑 → (((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) Cn 𝐾) = ((𝑁 ×t 𝐽) Cn 𝐾)) |
| 167 | 113, 156,
166 | 3eltr4d 2716 |
. 2
⊢ (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) ↾ ((𝐵[,]𝐶) × 𝑋)) ∈ (((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) Cn 𝐾)) |
| 168 | 1, 2, 35, 45, 58, 127, 154, 167 | paste 21098 |
1
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦 ∈ 𝑋 ↦ if(𝑥 ≤ 𝐵, 𝐷, 𝐸)) ∈ ((𝑂 ×t 𝐽) Cn 𝐾)) |