| Step | Hyp | Ref
| Expression |
| 1 | | simp-6l 810 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝜑) |
| 2 | | simpllr 799 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑥 ∈ 𝐽) |
| 3 | | txomap.1 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐿) |
| 4 | 1, 2, 3 | syl2anc 693 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐹 “ 𝑥) ∈ 𝐿) |
| 5 | | simplr 792 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑦 ∈ 𝐾) |
| 6 | | txomap.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐺 “ 𝑦) ∈ 𝑀) |
| 7 | 1, 5, 6 | syl2anc 693 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐺 “ 𝑦) ∈ 𝑀) |
| 8 | | txomap.h |
. . . . . . . . . 10
⊢ 𝐻 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) |
| 9 | | opex 4932 |
. . . . . . . . . 10
⊢
〈(𝐹‘𝑥), (𝐺‘𝑦)〉 ∈ V |
| 10 | 8, 9 | fnmpt2i 7239 |
. . . . . . . . 9
⊢ 𝐻 Fn (𝑋 × 𝑌) |
| 11 | 10 | a1i 11 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝐻 Fn (𝑋 × 𝑌)) |
| 12 | | txomap.j |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 13 | 1, 12 | syl 17 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 14 | | toponss 20731 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) |
| 15 | 13, 2, 14 | syl2anc 693 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑥 ⊆ 𝑋) |
| 16 | | txomap.k |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| 17 | 1, 16 | syl 17 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝐾 ∈ (TopOn‘𝑌)) |
| 18 | | toponss 20731 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑦 ∈ 𝐾) → 𝑦 ⊆ 𝑌) |
| 19 | 17, 5, 18 | syl2anc 693 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑦 ⊆ 𝑌) |
| 20 | | xpss12 5225 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌)) |
| 21 | 15, 19, 20 | syl2anc 693 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌)) |
| 22 | | simprl 794 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑧 ∈ (𝑥 × 𝑦)) |
| 23 | | fnfvima 6496 |
. . . . . . . 8
⊢ ((𝐻 Fn (𝑋 × 𝑌) ∧ (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑥 × 𝑦)) → (𝐻‘𝑧) ∈ (𝐻 “ (𝑥 × 𝑦))) |
| 24 | 11, 21, 22, 23 | syl3anc 1326 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐻‘𝑧) ∈ (𝐻 “ (𝑥 × 𝑦))) |
| 25 | | simp-4r 807 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐻‘𝑧) = 𝑐) |
| 26 | | txomap.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑋⟶𝑍) |
| 27 | | ffn 6045 |
. . . . . . . . 9
⊢ (𝐹:𝑋⟶𝑍 → 𝐹 Fn 𝑋) |
| 28 | 1, 26, 27 | 3syl 18 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝐹 Fn 𝑋) |
| 29 | | txomap.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:𝑌⟶𝑇) |
| 30 | | ffn 6045 |
. . . . . . . . 9
⊢ (𝐺:𝑌⟶𝑇 → 𝐺 Fn 𝑌) |
| 31 | 1, 29, 30 | 3syl 18 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝐺 Fn 𝑌) |
| 32 | 8, 28, 31, 15, 19 | fimaproj 29900 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐻 “ (𝑥 × 𝑦)) = ((𝐹 “ 𝑥) × (𝐺 “ 𝑦))) |
| 33 | 24, 25, 32 | 3eltr3d 2715 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → 𝑐 ∈ ((𝐹 “ 𝑥) × (𝐺 “ 𝑦))) |
| 34 | | imass2 5501 |
. . . . . . . 8
⊢ ((𝑥 × 𝑦) ⊆ 𝐴 → (𝐻 “ (𝑥 × 𝑦)) ⊆ (𝐻 “ 𝐴)) |
| 35 | 34 | ad2antll 765 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → (𝐻 “ (𝑥 × 𝑦)) ⊆ (𝐻 “ 𝐴)) |
| 36 | 32, 35 | eqsstr3d 3640 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → ((𝐹 “ 𝑥) × (𝐺 “ 𝑦)) ⊆ (𝐻 “ 𝐴)) |
| 37 | | xpeq1 5128 |
. . . . . . . . 9
⊢ (𝑎 = (𝐹 “ 𝑥) → (𝑎 × 𝑏) = ((𝐹 “ 𝑥) × 𝑏)) |
| 38 | 37 | eleq2d 2687 |
. . . . . . . 8
⊢ (𝑎 = (𝐹 “ 𝑥) → (𝑐 ∈ (𝑎 × 𝑏) ↔ 𝑐 ∈ ((𝐹 “ 𝑥) × 𝑏))) |
| 39 | 37 | sseq1d 3632 |
. . . . . . . 8
⊢ (𝑎 = (𝐹 “ 𝑥) → ((𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴) ↔ ((𝐹 “ 𝑥) × 𝑏) ⊆ (𝐻 “ 𝐴))) |
| 40 | 38, 39 | anbi12d 747 |
. . . . . . 7
⊢ (𝑎 = (𝐹 “ 𝑥) → ((𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴)) ↔ (𝑐 ∈ ((𝐹 “ 𝑥) × 𝑏) ∧ ((𝐹 “ 𝑥) × 𝑏) ⊆ (𝐻 “ 𝐴)))) |
| 41 | | xpeq2 5129 |
. . . . . . . . 9
⊢ (𝑏 = (𝐺 “ 𝑦) → ((𝐹 “ 𝑥) × 𝑏) = ((𝐹 “ 𝑥) × (𝐺 “ 𝑦))) |
| 42 | 41 | eleq2d 2687 |
. . . . . . . 8
⊢ (𝑏 = (𝐺 “ 𝑦) → (𝑐 ∈ ((𝐹 “ 𝑥) × 𝑏) ↔ 𝑐 ∈ ((𝐹 “ 𝑥) × (𝐺 “ 𝑦)))) |
| 43 | 41 | sseq1d 3632 |
. . . . . . . 8
⊢ (𝑏 = (𝐺 “ 𝑦) → (((𝐹 “ 𝑥) × 𝑏) ⊆ (𝐻 “ 𝐴) ↔ ((𝐹 “ 𝑥) × (𝐺 “ 𝑦)) ⊆ (𝐻 “ 𝐴))) |
| 44 | 42, 43 | anbi12d 747 |
. . . . . . 7
⊢ (𝑏 = (𝐺 “ 𝑦) → ((𝑐 ∈ ((𝐹 “ 𝑥) × 𝑏) ∧ ((𝐹 “ 𝑥) × 𝑏) ⊆ (𝐻 “ 𝐴)) ↔ (𝑐 ∈ ((𝐹 “ 𝑥) × (𝐺 “ 𝑦)) ∧ ((𝐹 “ 𝑥) × (𝐺 “ 𝑦)) ⊆ (𝐻 “ 𝐴)))) |
| 45 | 40, 44 | rspc2ev 3324 |
. . . . . 6
⊢ (((𝐹 “ 𝑥) ∈ 𝐿 ∧ (𝐺 “ 𝑦) ∈ 𝑀 ∧ (𝑐 ∈ ((𝐹 “ 𝑥) × (𝐺 “ 𝑦)) ∧ ((𝐹 “ 𝑥) × (𝐺 “ 𝑦)) ⊆ (𝐻 “ 𝐴))) → ∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴))) |
| 46 | 4, 7, 33, 36, 45 | syl112anc 1330 |
. . . . 5
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐾) ∧ (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) → ∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴))) |
| 47 | | txomap.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ (𝐽 ×t 𝐾)) |
| 48 | | eltx 21371 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐴 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑧 ∈ 𝐴 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴))) |
| 49 | 12, 16, 48 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑧 ∈ 𝐴 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴))) |
| 50 | 47, 49 | mpbid 222 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) |
| 51 | 50 | r19.21bi 2932 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) |
| 52 | 51 | adantlr 751 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) |
| 53 | 52 | adantr 481 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑧 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝐴)) |
| 54 | 46, 53 | r19.29vva 3081 |
. . . 4
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝐻‘𝑧) = 𝑐) → ∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴))) |
| 55 | 8 | mpt2fun 6762 |
. . . . . 6
⊢ Fun 𝐻 |
| 56 | | fvelima 6248 |
. . . . . 6
⊢ ((Fun
𝐻 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) → ∃𝑧 ∈ 𝐴 (𝐻‘𝑧) = 𝑐) |
| 57 | 55, 56 | mpan 706 |
. . . . 5
⊢ (𝑐 ∈ (𝐻 “ 𝐴) → ∃𝑧 ∈ 𝐴 (𝐻‘𝑧) = 𝑐) |
| 58 | 57 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) → ∃𝑧 ∈ 𝐴 (𝐻‘𝑧) = 𝑐) |
| 59 | 54, 58 | r19.29a 3078 |
. . 3
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐻 “ 𝐴)) → ∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴))) |
| 60 | 59 | ralrimiva 2966 |
. 2
⊢ (𝜑 → ∀𝑐 ∈ (𝐻 “ 𝐴)∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴))) |
| 61 | | txomap.l |
. . 3
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
| 62 | | txomap.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑇)) |
| 63 | | eltx 21371 |
. . 3
⊢ ((𝐿 ∈ (TopOn‘𝑍) ∧ 𝑀 ∈ (TopOn‘𝑇)) → ((𝐻 “ 𝐴) ∈ (𝐿 ×t 𝑀) ↔ ∀𝑐 ∈ (𝐻 “ 𝐴)∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴)))) |
| 64 | 61, 62, 63 | syl2anc 693 |
. 2
⊢ (𝜑 → ((𝐻 “ 𝐴) ∈ (𝐿 ×t 𝑀) ↔ ∀𝑐 ∈ (𝐻 “ 𝐴)∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑀 (𝑐 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐻 “ 𝐴)))) |
| 65 | 60, 64 | mpbird 247 |
1
⊢ (𝜑 → (𝐻 “ 𝐴) ∈ (𝐿 ×t 𝑀)) |