| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > txomap | Structured version Visualization version Unicode version | ||
| Description: Given two open maps |
| Ref | Expression |
|---|---|
| txomap.f |
|
| txomap.g |
|
| txomap.j |
|
| txomap.k |
|
| txomap.l |
|
| txomap.m |
|
| txomap.1 |
|
| txomap.2 |
|
| txomap.a |
|
| txomap.h |
|
| Ref | Expression |
|---|---|
| txomap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp-6l 810 |
. . . . . . 7
| |
| 2 | simpllr 799 |
. . . . . . 7
| |
| 3 | txomap.1 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | syl2anc 693 |
. . . . . 6
|
| 5 | simplr 792 |
. . . . . . 7
| |
| 6 | txomap.2 |
. . . . . . 7
| |
| 7 | 1, 5, 6 | syl2anc 693 |
. . . . . 6
|
| 8 | txomap.h |
. . . . . . . . . 10
| |
| 9 | opex 4932 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | fnmpt2i 7239 |
. . . . . . . . 9
|
| 11 | 10 | a1i 11 |
. . . . . . . 8
|
| 12 | txomap.j |
. . . . . . . . . . 11
| |
| 13 | 1, 12 | syl 17 |
. . . . . . . . . 10
|
| 14 | toponss 20731 |
. . . . . . . . . 10
| |
| 15 | 13, 2, 14 | syl2anc 693 |
. . . . . . . . 9
|
| 16 | txomap.k |
. . . . . . . . . . 11
| |
| 17 | 1, 16 | syl 17 |
. . . . . . . . . 10
|
| 18 | toponss 20731 |
. . . . . . . . . 10
| |
| 19 | 17, 5, 18 | syl2anc 693 |
. . . . . . . . 9
|
| 20 | xpss12 5225 |
. . . . . . . . 9
| |
| 21 | 15, 19, 20 | syl2anc 693 |
. . . . . . . 8
|
| 22 | simprl 794 |
. . . . . . . 8
| |
| 23 | fnfvima 6496 |
. . . . . . . 8
| |
| 24 | 11, 21, 22, 23 | syl3anc 1326 |
. . . . . . 7
|
| 25 | simp-4r 807 |
. . . . . . 7
| |
| 26 | txomap.f |
. . . . . . . . 9
| |
| 27 | ffn 6045 |
. . . . . . . . 9
| |
| 28 | 1, 26, 27 | 3syl 18 |
. . . . . . . 8
|
| 29 | txomap.g |
. . . . . . . . 9
| |
| 30 | ffn 6045 |
. . . . . . . . 9
| |
| 31 | 1, 29, 30 | 3syl 18 |
. . . . . . . 8
|
| 32 | 8, 28, 31, 15, 19 | fimaproj 29900 |
. . . . . . 7
|
| 33 | 24, 25, 32 | 3eltr3d 2715 |
. . . . . 6
|
| 34 | imass2 5501 |
. . . . . . . 8
| |
| 35 | 34 | ad2antll 765 |
. . . . . . 7
|
| 36 | 32, 35 | eqsstr3d 3640 |
. . . . . 6
|
| 37 | xpeq1 5128 |
. . . . . . . . 9
| |
| 38 | 37 | eleq2d 2687 |
. . . . . . . 8
|
| 39 | 37 | sseq1d 3632 |
. . . . . . . 8
|
| 40 | 38, 39 | anbi12d 747 |
. . . . . . 7
|
| 41 | xpeq2 5129 |
. . . . . . . . 9
| |
| 42 | 41 | eleq2d 2687 |
. . . . . . . 8
|
| 43 | 41 | sseq1d 3632 |
. . . . . . . 8
|
| 44 | 42, 43 | anbi12d 747 |
. . . . . . 7
|
| 45 | 40, 44 | rspc2ev 3324 |
. . . . . 6
|
| 46 | 4, 7, 33, 36, 45 | syl112anc 1330 |
. . . . 5
|
| 47 | txomap.a |
. . . . . . . . 9
| |
| 48 | eltx 21371 |
. . . . . . . . . 10
| |
| 49 | 12, 16, 48 | syl2anc 693 |
. . . . . . . . 9
|
| 50 | 47, 49 | mpbid 222 |
. . . . . . . 8
|
| 51 | 50 | r19.21bi 2932 |
. . . . . . 7
|
| 52 | 51 | adantlr 751 |
. . . . . 6
|
| 53 | 52 | adantr 481 |
. . . . 5
|
| 54 | 46, 53 | r19.29vva 3081 |
. . . 4
|
| 55 | 8 | mpt2fun 6762 |
. . . . . 6
|
| 56 | fvelima 6248 |
. . . . . 6
| |
| 57 | 55, 56 | mpan 706 |
. . . . 5
|
| 58 | 57 | adantl 482 |
. . . 4
|
| 59 | 54, 58 | r19.29a 3078 |
. . 3
|
| 60 | 59 | ralrimiva 2966 |
. 2
|
| 61 | txomap.l |
. . 3
| |
| 62 | txomap.m |
. . 3
| |
| 63 | eltx 21371 |
. . 3
| |
| 64 | 61, 62, 63 | syl2anc 693 |
. 2
|
| 65 | 60, 64 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-topgen 16104 df-topon 20716 df-tx 21365 |
| This theorem is referenced by: qtophaus 29903 |
| Copyright terms: Public domain | W3C validator |