MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufildom1 Structured version   Visualization version   GIF version

Theorem ufildom1 21730
Description: An ultrafilter is generated by at most one element (because free ultrafilters have no generators and fixed ultrafilters have exactly one). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
ufildom1 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ≼ 1𝑜)

Proof of Theorem ufildom1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq1 4656 . 2 ( 𝐹 = ∅ → ( 𝐹 ≼ 1𝑜 ↔ ∅ ≼ 1𝑜))
2 uffixsn 21729 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → {𝑥} ∈ 𝐹)
3 intss1 4492 . . . . . . . . 9 ({𝑥} ∈ 𝐹 𝐹 ⊆ {𝑥})
42, 3syl 17 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → 𝐹 ⊆ {𝑥})
5 simpr 477 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → 𝑥 𝐹)
65snssd 4340 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → {𝑥} ⊆ 𝐹)
74, 6eqssd 3620 . . . . . . 7 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → 𝐹 = {𝑥})
87ex 450 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹 𝐹 = {𝑥}))
98eximdv 1846 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (∃𝑥 𝑥 𝐹 → ∃𝑥 𝐹 = {𝑥}))
10 n0 3931 . . . . 5 ( 𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 𝐹)
11 en1 8023 . . . . 5 ( 𝐹 ≈ 1𝑜 ↔ ∃𝑥 𝐹 = {𝑥})
129, 10, 113imtr4g 285 . . . 4 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 ≠ ∅ → 𝐹 ≈ 1𝑜))
1312imp 445 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 ≠ ∅) → 𝐹 ≈ 1𝑜)
14 endom 7982 . . 3 ( 𝐹 ≈ 1𝑜 𝐹 ≼ 1𝑜)
1513, 14syl 17 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 ≠ ∅) → 𝐹 ≼ 1𝑜)
16 1on 7567 . . 3 1𝑜 ∈ On
17 0domg 8087 . . 3 (1𝑜 ∈ On → ∅ ≼ 1𝑜)
1816, 17mp1i 13 . 2 (𝐹 ∈ (UFil‘𝑋) → ∅ ≼ 1𝑜)
191, 15, 18pm2.61ne 2879 1 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ≼ 1𝑜)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wss 3574  c0 3915  {csn 4177   cint 4475   class class class wbr 4653  Oncon0 5723  cfv 5888  1𝑜c1o 7553  cen 7952  cdom 7953  UFilcufil 21703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-en 7956  df-dom 7957  df-fbas 19743  df-fg 19744  df-fil 21650  df-ufil 21705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator