MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulm0 Structured version   Visualization version   GIF version

Theorem ulm0 24145
Description: Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
ulm0.z 𝑍 = (ℤ𝑀)
ulm0.m (𝜑𝑀 ∈ ℤ)
ulm0.f (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
ulm0.g (𝜑𝐺:𝑆⟶ℂ)
Assertion
Ref Expression
ulm0 ((𝜑𝑆 = ∅) → 𝐹(⇝𝑢𝑆)𝐺)

Proof of Theorem ulm0
Dummy variables 𝑗 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulm0.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
2 uzid 11702 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑀))
4 ulm0.z . . . . . . 7 𝑍 = (ℤ𝑀)
53, 4syl6eleqr 2712 . . . . . 6 (𝜑𝑀𝑍)
6 ne0i 3921 . . . . . 6 (𝑀𝑍𝑍 ≠ ∅)
75, 6syl 17 . . . . 5 (𝜑𝑍 ≠ ∅)
87adantr 481 . . . 4 ((𝜑𝑆 = ∅) → 𝑍 ≠ ∅)
9 ral0 4076 . . . . . . 7 𝑧 ∈ ∅ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥
10 simpr 477 . . . . . . . 8 ((𝜑𝑆 = ∅) → 𝑆 = ∅)
1110raleqdv 3144 . . . . . . 7 ((𝜑𝑆 = ∅) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑧 ∈ ∅ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
129, 11mpbiri 248 . . . . . 6 ((𝜑𝑆 = ∅) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
1312ralrimivw 2967 . . . . 5 ((𝜑𝑆 = ∅) → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
1413ralrimivw 2967 . . . 4 ((𝜑𝑆 = ∅) → ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
15 r19.2z 4060 . . . 4 ((𝑍 ≠ ∅ ∧ ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
168, 14, 15syl2anc 693 . . 3 ((𝜑𝑆 = ∅) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
1716ralrimivw 2967 . 2 ((𝜑𝑆 = ∅) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)
181adantr 481 . . 3 ((𝜑𝑆 = ∅) → 𝑀 ∈ ℤ)
19 ulm0.f . . . 4 (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
2019adantr 481 . . 3 ((𝜑𝑆 = ∅) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
21 eqidd 2623 . . 3 (((𝜑𝑆 = ∅) ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
22 eqidd 2623 . . 3 (((𝜑𝑆 = ∅) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
23 ulm0.g . . . 4 (𝜑𝐺:𝑆⟶ℂ)
2423adantr 481 . . 3 ((𝜑𝑆 = ∅) → 𝐺:𝑆⟶ℂ)
25 0ex 4790 . . . 4 ∅ ∈ V
2610, 25syl6eqel 2709 . . 3 ((𝜑𝑆 = ∅) → 𝑆 ∈ V)
274, 18, 20, 21, 22, 24, 26ulm2 24139 . 2 ((𝜑𝑆 = ∅) → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))
2817, 27mpbird 247 1 ((𝜑𝑆 = ∅) → 𝐹(⇝𝑢𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  c0 3915   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cc 9934   < clt 10074  cmin 10266  cz 11377  cuz 11687  +crp 11832  abscabs 13974  𝑢culm 24130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-ulm 24131
This theorem is referenced by:  pserulm  24176
  Copyright terms: Public domain W3C validator