MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserulm Structured version   Visualization version   GIF version

Theorem pserulm 24176
Description: If 𝑆 is a region contained in a circle of radius 𝑀 < 𝑅, then the sequence of partial sums of the infinite series converges uniformly on 𝑆. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
pserulm.h 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
pserulm.m (𝜑𝑀 ∈ ℝ)
pserulm.l (𝜑𝑀 < 𝑅)
pserulm.y (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))
Assertion
Ref Expression
pserulm (𝜑𝐻(⇝𝑢𝑆)𝐹)
Distinct variable groups:   𝑗,𝑛,𝑟,𝑥,𝑦,𝐴   𝑖,𝑗,𝑦,𝐻   𝑖,𝑀,𝑗,𝑦   𝑥,𝑖,𝑟   𝑖,𝐺,𝑗,𝑟,𝑦   𝑆,𝑖,𝑗,𝑦   𝜑,𝑖,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑖)   𝑅(𝑥,𝑦,𝑖,𝑗,𝑛,𝑟)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑖,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)   𝑀(𝑥,𝑛,𝑟)

Proof of Theorem pserulm
Dummy variables 𝑘 𝑚 𝑤 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pserulm.y . . . . . 6 (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))
21adantr 481 . . . . 5 ((𝜑𝑀 < 0) → 𝑆 ⊆ (abs “ (0[,]𝑀)))
3 0xr 10086 . . . . . . . . 9 0 ∈ ℝ*
4 pserulm.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
54rexrd 10089 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ*)
6 icc0 12223 . . . . . . . . 9 ((0 ∈ ℝ*𝑀 ∈ ℝ*) → ((0[,]𝑀) = ∅ ↔ 𝑀 < 0))
73, 5, 6sylancr 695 . . . . . . . 8 (𝜑 → ((0[,]𝑀) = ∅ ↔ 𝑀 < 0))
87biimpar 502 . . . . . . 7 ((𝜑𝑀 < 0) → (0[,]𝑀) = ∅)
98imaeq2d 5466 . . . . . 6 ((𝜑𝑀 < 0) → (abs “ (0[,]𝑀)) = (abs “ ∅))
10 ima0 5481 . . . . . 6 (abs “ ∅) = ∅
119, 10syl6eq 2672 . . . . 5 ((𝜑𝑀 < 0) → (abs “ (0[,]𝑀)) = ∅)
122, 11sseqtrd 3641 . . . 4 ((𝜑𝑀 < 0) → 𝑆 ⊆ ∅)
13 ss0 3974 . . . 4 (𝑆 ⊆ ∅ → 𝑆 = ∅)
1412, 13syl 17 . . 3 ((𝜑𝑀 < 0) → 𝑆 = ∅)
15 nn0uz 11722 . . . 4 0 = (ℤ‘0)
16 0zd 11389 . . . 4 (𝜑 → 0 ∈ ℤ)
17 0zd 11389 . . . . . . . . . 10 ((𝜑𝑦𝑆) → 0 ∈ ℤ)
18 pserf.g . . . . . . . . . . . 12 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
19 pserf.a . . . . . . . . . . . . 13 (𝜑𝐴:ℕ0⟶ℂ)
2019adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝐴:ℕ0⟶ℂ)
21 cnvimass 5485 . . . . . . . . . . . . . . 15 (abs “ (0[,]𝑀)) ⊆ dom abs
22 absf 14077 . . . . . . . . . . . . . . . 16 abs:ℂ⟶ℝ
2322fdmi 6052 . . . . . . . . . . . . . . 15 dom abs = ℂ
2421, 23sseqtri 3637 . . . . . . . . . . . . . 14 (abs “ (0[,]𝑀)) ⊆ ℂ
251, 24syl6ss 3615 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℂ)
2625sselda 3603 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝑦 ∈ ℂ)
2718, 20, 26psergf 24166 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → (𝐺𝑦):ℕ0⟶ℂ)
2827ffvelrnda 6359 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) ∈ ℂ)
2915, 17, 28serf 12829 . . . . . . . . 9 ((𝜑𝑦𝑆) → seq0( + , (𝐺𝑦)):ℕ0⟶ℂ)
3029ffvelrnda 6359 . . . . . . . 8 (((𝜑𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → (seq0( + , (𝐺𝑦))‘𝑖) ∈ ℂ)
3130an32s 846 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑦𝑆) → (seq0( + , (𝐺𝑦))‘𝑖) ∈ ℂ)
32 eqid 2622 . . . . . . 7 (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))
3331, 32fmptd 6385 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)):𝑆⟶ℂ)
34 cnex 10017 . . . . . . 7 ℂ ∈ V
35 ssexg 4804 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
3625, 34, 35sylancl 694 . . . . . . . 8 (𝜑𝑆 ∈ V)
3736adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑆 ∈ V)
38 elmapg 7870 . . . . . . 7 ((ℂ ∈ V ∧ 𝑆 ∈ V) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ ↑𝑚 𝑆) ↔ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)):𝑆⟶ℂ))
3934, 37, 38sylancr 695 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ ↑𝑚 𝑆) ↔ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)):𝑆⟶ℂ))
4033, 39mpbird 247 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ ↑𝑚 𝑆))
41 pserulm.h . . . . 5 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
4240, 41fmptd 6385 . . . 4 (𝜑𝐻:ℕ0⟶(ℂ ↑𝑚 𝑆))
43 eqidd 2623 . . . . . 6 (((𝜑𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) = ((𝐺𝑦)‘𝑗))
44 pserf.r . . . . . . 7 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
451sselda 3603 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → 𝑦 ∈ (abs “ (0[,]𝑀)))
46 ffn 6045 . . . . . . . . . . . . . 14 (abs:ℂ⟶ℝ → abs Fn ℂ)
47 elpreima 6337 . . . . . . . . . . . . . 14 (abs Fn ℂ → (𝑦 ∈ (abs “ (0[,]𝑀)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀))))
4822, 46, 47mp2b 10 . . . . . . . . . . . . 13 (𝑦 ∈ (abs “ (0[,]𝑀)) ↔ (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀)))
4945, 48sylib 208 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (𝑦 ∈ ℂ ∧ (abs‘𝑦) ∈ (0[,]𝑀)))
5049simprd 479 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → (abs‘𝑦) ∈ (0[,]𝑀))
51 0re 10040 . . . . . . . . . . . 12 0 ∈ ℝ
524adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝑀 ∈ ℝ)
53 elicc2 12238 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑦) ∈ (0[,]𝑀) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) ≤ 𝑀)))
5451, 52, 53sylancr 695 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → ((abs‘𝑦) ∈ (0[,]𝑀) ↔ ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) ≤ 𝑀)))
5550, 54mpbid 222 . . . . . . . . . 10 ((𝜑𝑦𝑆) → ((abs‘𝑦) ∈ ℝ ∧ 0 ≤ (abs‘𝑦) ∧ (abs‘𝑦) ≤ 𝑀))
5655simp1d 1073 . . . . . . . . 9 ((𝜑𝑦𝑆) → (abs‘𝑦) ∈ ℝ)
5756rexrd 10089 . . . . . . . 8 ((𝜑𝑦𝑆) → (abs‘𝑦) ∈ ℝ*)
585adantr 481 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑀 ∈ ℝ*)
59 iccssxr 12256 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
6018, 19, 44radcnvcl 24171 . . . . . . . . . 10 (𝜑𝑅 ∈ (0[,]+∞))
6159, 60sseldi 3601 . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
6261adantr 481 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑅 ∈ ℝ*)
6355simp3d 1075 . . . . . . . 8 ((𝜑𝑦𝑆) → (abs‘𝑦) ≤ 𝑀)
64 pserulm.l . . . . . . . . 9 (𝜑𝑀 < 𝑅)
6564adantr 481 . . . . . . . 8 ((𝜑𝑦𝑆) → 𝑀 < 𝑅)
6657, 58, 62, 63, 65xrlelttrd 11991 . . . . . . 7 ((𝜑𝑦𝑆) → (abs‘𝑦) < 𝑅)
6718, 20, 44, 26, 66radcnvlt2 24173 . . . . . 6 ((𝜑𝑦𝑆) → seq0( + , (𝐺𝑦)) ∈ dom ⇝ )
6815, 17, 43, 28, 67isumcl 14492 . . . . 5 ((𝜑𝑦𝑆) → Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) ∈ ℂ)
69 pserf.f . . . . 5 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
7068, 69fmptd 6385 . . . 4 (𝜑𝐹:𝑆⟶ℂ)
7115, 16, 42, 70ulm0 24145 . . 3 ((𝜑𝑆 = ∅) → 𝐻(⇝𝑢𝑆)𝐹)
7214, 71syldan 487 . 2 ((𝜑𝑀 < 0) → 𝐻(⇝𝑢𝑆)𝐹)
73 simpr 477 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
7473, 15syl6eleq 2711 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ‘0))
75 elfznn0 12433 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0)
7675adantl 482 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0)
7736ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑆 ∈ V)
78 mptexg 6484 . . . . . . . . . . 11 (𝑆 ∈ V → (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) ∈ V)
7977, 78syl 17 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) ∈ V)
80 fveq2 6191 . . . . . . . . . . . . . 14 (𝑤 = 𝑦 → (𝐺𝑤) = (𝐺𝑦))
8180fveq1d 6193 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → ((𝐺𝑤)‘𝑚) = ((𝐺𝑦)‘𝑚))
8281cbvmptv 4750 . . . . . . . . . . . 12 (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑚))
83 fveq2 6191 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → ((𝐺𝑦)‘𝑚) = ((𝐺𝑦)‘𝑘))
8483mpteq2dv 4745 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑚)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
8582, 84syl5eq 2668 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
86 eqid 2622 . . . . . . . . . . 11 (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))
8785, 86fvmptg 6280 . . . . . . . . . 10 ((𝑘 ∈ ℕ0 ∧ (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) ∈ V) → ((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
8876, 79, 87syl2anc 693 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
8937, 74, 88seqof 12858 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
9089eqcomd 2628 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) = (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖))
9190mpteq2dva 4744 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))) = (𝑖 ∈ ℕ0 ↦ (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖)))
92 0z 11388 . . . . . . . . 9 0 ∈ ℤ
93 seqfn 12813 . . . . . . . . 9 (0 ∈ ℤ → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn (ℤ‘0))
9492, 93ax-mp 5 . . . . . . . 8 seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn (ℤ‘0)
9515fneq2i 5986 . . . . . . . 8 (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn (ℤ‘0))
9694, 95mpbir 221 . . . . . . 7 seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn ℕ0
97 dffn5 6241 . . . . . . 7 (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) = (𝑖 ∈ ℕ0 ↦ (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖)))
9896, 97mpbi 220 . . . . . 6 seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) = (𝑖 ∈ ℕ0 ↦ (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))))‘𝑖))
9991, 41, 983eqtr4g 2681 . . . . 5 (𝜑𝐻 = seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))))
10099adantr 481 . . . 4 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻 = seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))))
101 0zd 11389 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → 0 ∈ ℤ)
10236adantr 481 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑆 ∈ V)
10319adantr 481 . . . . . . . . . . . 12 ((𝜑𝑤𝑆) → 𝐴:ℕ0⟶ℂ)
10425sselda 3603 . . . . . . . . . . . 12 ((𝜑𝑤𝑆) → 𝑤 ∈ ℂ)
10518, 103, 104psergf 24166 . . . . . . . . . . 11 ((𝜑𝑤𝑆) → (𝐺𝑤):ℕ0⟶ℂ)
106105ffvelrnda 6359 . . . . . . . . . 10 (((𝜑𝑤𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝐺𝑤)‘𝑚) ∈ ℂ)
107106an32s 846 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑤𝑆) → ((𝐺𝑤)‘𝑚) ∈ ℂ)
108 eqid 2622 . . . . . . . . 9 (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) = (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))
109107, 108fmptd 6385 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)):𝑆⟶ℂ)
11036adantr 481 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → 𝑆 ∈ V)
111 elmapg 7870 . . . . . . . . 9 ((ℂ ∈ V ∧ 𝑆 ∈ V) → ((𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) ∈ (ℂ ↑𝑚 𝑆) ↔ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)):𝑆⟶ℂ))
11234, 110, 111sylancr 695 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → ((𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) ∈ (ℂ ↑𝑚 𝑆) ↔ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)):𝑆⟶ℂ))
113109, 112mpbird 247 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)) ∈ (ℂ ↑𝑚 𝑆))
114113, 86fmptd 6385 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))):ℕ0⟶(ℂ ↑𝑚 𝑆))
115114adantr 481 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚))):ℕ0⟶(ℂ ↑𝑚 𝑆))
116 fex 6490 . . . . . . . 8 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
11722, 34, 116mp2an 708 . . . . . . 7 abs ∈ V
118 fvex 6201 . . . . . . 7 (𝐺𝑀) ∈ V
119117, 118coex 7118 . . . . . 6 (abs ∘ (𝐺𝑀)) ∈ V
120119a1i 11 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → (abs ∘ (𝐺𝑀)) ∈ V)
12119adantr 481 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐴:ℕ0⟶ℂ)
1224adantr 481 . . . . . . . . 9 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℝ)
123122recnd 10068 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℂ)
12418, 121, 123psergf 24166 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝑀) → (𝐺𝑀):ℕ0⟶ℂ)
125 fco 6058 . . . . . . 7 ((abs:ℂ⟶ℝ ∧ (𝐺𝑀):ℕ0⟶ℂ) → (abs ∘ (𝐺𝑀)):ℕ0⟶ℝ)
12622, 124, 125sylancr 695 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝑀) → (abs ∘ (𝐺𝑀)):ℕ0⟶ℝ)
127126ffvelrnda 6359 . . . . 5 (((𝜑 ∧ 0 ≤ 𝑀) ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑀))‘𝑘) ∈ ℝ)
12825ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑆 ⊆ ℂ)
129 simprr 796 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑧𝑆)
130128, 129sseldd 3604 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑧 ∈ ℂ)
131 simprl 794 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑘 ∈ ℕ0)
132130, 131expcld 13008 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝑧𝑘) ∈ ℂ)
133132abscld 14175 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑧𝑘)) ∈ ℝ)
134123adantr 481 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑀 ∈ ℂ)
135134, 131expcld 13008 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝑀𝑘) ∈ ℂ)
136135abscld 14175 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑀𝑘)) ∈ ℝ)
13719ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝐴:ℕ0⟶ℂ)
138137, 131ffvelrnd 6360 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝐴𝑘) ∈ ℂ)
139138abscld 14175 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝐴𝑘)) ∈ ℝ)
140138absge0d 14183 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 0 ≤ (abs‘(𝐴𝑘)))
141130abscld 14175 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘𝑧) ∈ ℝ)
1424ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑀 ∈ ℝ)
143130absge0d 14183 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 0 ≤ (abs‘𝑧))
14463ralrimiva 2966 . . . . . . . . . . . 12 (𝜑 → ∀𝑦𝑆 (abs‘𝑦) ≤ 𝑀)
145144ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ∀𝑦𝑆 (abs‘𝑦) ≤ 𝑀)
146 fveq2 6191 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (abs‘𝑦) = (abs‘𝑧))
147146breq1d 4663 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((abs‘𝑦) ≤ 𝑀 ↔ (abs‘𝑧) ≤ 𝑀))
148147rspcv 3305 . . . . . . . . . . 11 (𝑧𝑆 → (∀𝑦𝑆 (abs‘𝑦) ≤ 𝑀 → (abs‘𝑧) ≤ 𝑀))
149129, 145, 148sylc 65 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘𝑧) ≤ 𝑀)
150 leexp1a 12919 . . . . . . . . . 10 ((((abs‘𝑧) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ (abs‘𝑧) ∧ (abs‘𝑧) ≤ 𝑀)) → ((abs‘𝑧)↑𝑘) ≤ (𝑀𝑘))
151141, 142, 131, 143, 149, 150syl32anc 1334 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs‘𝑧)↑𝑘) ≤ (𝑀𝑘))
152130, 131absexpd 14191 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑧𝑘)) = ((abs‘𝑧)↑𝑘))
153134, 131absexpd 14191 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑀𝑘)) = ((abs‘𝑀)↑𝑘))
154 absid 14036 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (abs‘𝑀) = 𝑀)
1554, 154sylan 488 . . . . . . . . . . . 12 ((𝜑 ∧ 0 ≤ 𝑀) → (abs‘𝑀) = 𝑀)
156155adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘𝑀) = 𝑀)
157156oveq1d 6665 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs‘𝑀)↑𝑘) = (𝑀𝑘))
158153, 157eqtrd 2656 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑀𝑘)) = (𝑀𝑘))
159151, 152, 1583brtr4d 4685 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(𝑧𝑘)) ≤ (abs‘(𝑀𝑘)))
160133, 136, 139, 140, 159lemul2ad 10964 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs‘(𝐴𝑘)) · (abs‘(𝑧𝑘))) ≤ ((abs‘(𝐴𝑘)) · (abs‘(𝑀𝑘))))
161138, 132absmuld 14193 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐴𝑘) · (𝑧𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑧𝑘))))
162138, 135absmuld 14193 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐴𝑘) · (𝑀𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑀𝑘))))
163160, 161, 1623brtr4d 4685 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐴𝑘) · (𝑧𝑘))) ≤ (abs‘((𝐴𝑘) · (𝑀𝑘))))
16436ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → 𝑆 ∈ V)
165164, 78syl 17 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) ∈ V)
166131, 165, 87syl2anc 693 . . . . . . . . 9 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)))
167166fveq1d 6193 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧) = ((𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))‘𝑧))
168 fveq2 6191 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
169168fveq1d 6193 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐺𝑦)‘𝑘) = ((𝐺𝑧)‘𝑘))
170 eqid 2622 . . . . . . . . . 10 (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘)) = (𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))
171 fvex 6201 . . . . . . . . . 10 ((𝐺𝑧)‘𝑘) ∈ V
172169, 170, 171fvmpt 6282 . . . . . . . . 9 (𝑧𝑆 → ((𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))‘𝑧) = ((𝐺𝑧)‘𝑘))
173172ad2antll 765 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝑦𝑆 ↦ ((𝐺𝑦)‘𝑘))‘𝑧) = ((𝐺𝑧)‘𝑘))
17418pserval2 24165 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑧)‘𝑘) = ((𝐴𝑘) · (𝑧𝑘)))
175130, 131, 174syl2anc 693 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝐺𝑧)‘𝑘) = ((𝐴𝑘) · (𝑧𝑘)))
176167, 173, 1753eqtrd 2660 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧) = ((𝐴𝑘) · (𝑧𝑘)))
177176fveq2d 6195 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧)) = (abs‘((𝐴𝑘) · (𝑧𝑘))))
178124adantr 481 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (𝐺𝑀):ℕ0⟶ℂ)
179 fvco3 6275 . . . . . . . 8 (((𝐺𝑀):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑀))‘𝑘) = (abs‘((𝐺𝑀)‘𝑘)))
180178, 131, 179syl2anc 693 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs ∘ (𝐺𝑀))‘𝑘) = (abs‘((𝐺𝑀)‘𝑘)))
18118pserval2 24165 . . . . . . . . 9 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑀)‘𝑘) = ((𝐴𝑘) · (𝑀𝑘)))
182134, 131, 181syl2anc 693 . . . . . . . 8 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((𝐺𝑀)‘𝑘) = ((𝐴𝑘) · (𝑀𝑘)))
183182fveq2d 6195 . . . . . . 7 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘((𝐺𝑀)‘𝑘)) = (abs‘((𝐴𝑘) · (𝑀𝑘))))
184180, 183eqtrd 2656 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → ((abs ∘ (𝐺𝑀))‘𝑘) = (abs‘((𝐴𝑘) · (𝑀𝑘))))
185163, 177, 1843brtr4d 4685 . . . . 5 (((𝜑 ∧ 0 ≤ 𝑀) ∧ (𝑘 ∈ ℕ0𝑧𝑆)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))‘𝑘)‘𝑧)) ≤ ((abs ∘ (𝐺𝑀))‘𝑘))
18664adantr 481 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝑀) → 𝑀 < 𝑅)
187155, 186eqbrtrd 4675 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝑀) → (abs‘𝑀) < 𝑅)
188 id 22 . . . . . . . . 9 (𝑖 = 𝑚𝑖 = 𝑚)
189 fveq2 6191 . . . . . . . . . 10 (𝑖 = 𝑚 → ((𝐺𝑀)‘𝑖) = ((𝐺𝑀)‘𝑚))
190189fveq2d 6195 . . . . . . . . 9 (𝑖 = 𝑚 → (abs‘((𝐺𝑀)‘𝑖)) = (abs‘((𝐺𝑀)‘𝑚)))
191188, 190oveq12d 6668 . . . . . . . 8 (𝑖 = 𝑚 → (𝑖 · (abs‘((𝐺𝑀)‘𝑖))) = (𝑚 · (abs‘((𝐺𝑀)‘𝑚))))
192191cbvmptv 4750 . . . . . . 7 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑀)‘𝑖)))) = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑀)‘𝑚))))
19318, 121, 44, 123, 187, 192radcnvlt1 24172 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝑀) → (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑀)‘𝑖))))) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑀))) ∈ dom ⇝ ))
194193simprd 479 . . . . 5 ((𝜑 ∧ 0 ≤ 𝑀) → seq0( + , (abs ∘ (𝐺𝑀))) ∈ dom ⇝ )
19515, 101, 102, 115, 120, 127, 185, 194mtest 24158 . . . 4 ((𝜑 ∧ 0 ≤ 𝑀) → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑤𝑆 ↦ ((𝐺𝑤)‘𝑚)))) ∈ dom (⇝𝑢𝑆))
196100, 195eqeltrd 2701 . . 3 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻 ∈ dom (⇝𝑢𝑆))
197 eldmg 5319 . . . . . 6 (𝐻 ∈ dom (⇝𝑢𝑆) → (𝐻 ∈ dom (⇝𝑢𝑆) ↔ ∃𝑓 𝐻(⇝𝑢𝑆)𝑓))
198197ibi 256 . . . . 5 (𝐻 ∈ dom (⇝𝑢𝑆) → ∃𝑓 𝐻(⇝𝑢𝑆)𝑓)
199 simpr 477 . . . . . . . 8 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝐻(⇝𝑢𝑆)𝑓)
200 ulmcl 24135 . . . . . . . . . . 11 (𝐻(⇝𝑢𝑆)𝑓𝑓:𝑆⟶ℂ)
201200adantl 482 . . . . . . . . . 10 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝑓:𝑆⟶ℂ)
202201feqmptd 6249 . . . . . . . . 9 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝑓 = (𝑦𝑆 ↦ (𝑓𝑦)))
203 0zd 11389 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 0 ∈ ℤ)
204 eqidd 2623 . . . . . . . . . . . 12 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) = ((𝐺𝑦)‘𝑗))
20527adantlr 751 . . . . . . . . . . . . 13 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → (𝐺𝑦):ℕ0⟶ℂ)
206205ffvelrnda 6359 . . . . . . . . . . . 12 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑦)‘𝑗) ∈ ℂ)
20742ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 𝐻:ℕ0⟶(ℂ ↑𝑚 𝑆))
208 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 𝑦𝑆)
209 seqex 12803 . . . . . . . . . . . . . 14 seq0( + , (𝐺𝑦)) ∈ V
210209a1i 11 . . . . . . . . . . . . 13 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → seq0( + , (𝐺𝑦)) ∈ V)
211 simpr 477 . . . . . . . . . . . . . . . 16 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
21236ad3antrrr 766 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑆 ∈ V)
213 mptexg 6484 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ V → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ V)
214212, 213syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ V)
21541fvmpt2 6291 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℕ0 ∧ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ V) → (𝐻𝑖) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
216211, 214, 215syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → (𝐻𝑖) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
217216fveq1d 6193 . . . . . . . . . . . . . 14 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝐻𝑖)‘𝑦) = ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))‘𝑦))
218 simplr 792 . . . . . . . . . . . . . . 15 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑦𝑆)
219 fvex 6201 . . . . . . . . . . . . . . 15 (seq0( + , (𝐺𝑦))‘𝑖) ∈ V
22032fvmpt2 6291 . . . . . . . . . . . . . . 15 ((𝑦𝑆 ∧ (seq0( + , (𝐺𝑦))‘𝑖) ∈ V) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))‘𝑦) = (seq0( + , (𝐺𝑦))‘𝑖))
221218, 219, 220sylancl 694 . . . . . . . . . . . . . 14 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖))‘𝑦) = (seq0( + , (𝐺𝑦))‘𝑖))
222217, 221eqtrd 2656 . . . . . . . . . . . . 13 ((((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝐻𝑖)‘𝑦) = (seq0( + , (𝐺𝑦))‘𝑖))
223 simplr 792 . . . . . . . . . . . . 13 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → 𝐻(⇝𝑢𝑆)𝑓)
22415, 203, 207, 208, 210, 222, 223ulmclm 24141 . . . . . . . . . . . 12 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → seq0( + , (𝐺𝑦)) ⇝ (𝑓𝑦))
22515, 203, 204, 206, 224isumclim 14488 . . . . . . . . . . 11 (((𝜑𝐻(⇝𝑢𝑆)𝑓) ∧ 𝑦𝑆) → Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) = (𝑓𝑦))
226225mpteq2dva 4744 . . . . . . . . . 10 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) = (𝑦𝑆 ↦ (𝑓𝑦)))
22769, 226syl5eq 2668 . . . . . . . . 9 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝐹 = (𝑦𝑆 ↦ (𝑓𝑦)))
228202, 227eqtr4d 2659 . . . . . . . 8 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝑓 = 𝐹)
229199, 228breqtrd 4679 . . . . . . 7 ((𝜑𝐻(⇝𝑢𝑆)𝑓) → 𝐻(⇝𝑢𝑆)𝐹)
230229ex 450 . . . . . 6 (𝜑 → (𝐻(⇝𝑢𝑆)𝑓𝐻(⇝𝑢𝑆)𝐹))
231230exlimdv 1861 . . . . 5 (𝜑 → (∃𝑓 𝐻(⇝𝑢𝑆)𝑓𝐻(⇝𝑢𝑆)𝐹))
232198, 231syl5 34 . . . 4 (𝜑 → (𝐻 ∈ dom (⇝𝑢𝑆) → 𝐻(⇝𝑢𝑆)𝐹))
233232imp 445 . . 3 ((𝜑𝐻 ∈ dom (⇝𝑢𝑆)) → 𝐻(⇝𝑢𝑆)𝐹)
234196, 233syldan 487 . 2 ((𝜑 ∧ 0 ≤ 𝑀) → 𝐻(⇝𝑢𝑆)𝐹)
235 0red 10041 . 2 (𝜑 → 0 ∈ ℝ)
23672, 234, 4, 235ltlecasei 10145 1 (𝜑𝐻(⇝𝑢𝑆)𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  wss 3574  c0 3915   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  cima 5117  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑚 cmap 7857  supcsup 8346  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  0cn0 11292  cz 11377  cuz 11687  [,]cicc 12178  ...cfz 12326  seqcseq 12801  cexp 12860  abscabs 13974  cli 14215  Σcsu 14416  𝑢culm 24130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ulm 24131
This theorem is referenced by:  psercn2  24177  pserdvlem2  24182
  Copyright terms: Public domain W3C validator