MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmres Structured version   Visualization version   GIF version

Theorem ulmres 24142
Description: A sequence of functions converges iff the tail of the sequence converges (for any finite cutoff). (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ulmres.z 𝑍 = (ℤ𝑀)
ulmres.w 𝑊 = (ℤ𝑁)
ulmres.m (𝜑𝑁𝑍)
ulmres.f (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
Assertion
Ref Expression
ulmres (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺))

Proof of Theorem ulmres
Dummy variables 𝑗 𝑘 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmscl 24133 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
2 ulmcl 24135 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
31, 2jca 554 . . 3 (𝐹(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ))
43a1i 11 . 2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)))
5 ulmscl 24133 . . . 4 ((𝐹𝑊)(⇝𝑢𝑆)𝐺𝑆 ∈ V)
6 ulmcl 24135 . . . 4 ((𝐹𝑊)(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
75, 6jca 554 . . 3 ((𝐹𝑊)(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ))
87a1i 11 . 2 (𝜑 → ((𝐹𝑊)(⇝𝑢𝑆)𝐺 → (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)))
9 ulmres.m . . . . . . . . . 10 (𝜑𝑁𝑍)
10 ulmres.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
119, 10syl6eleq 2711 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
1211adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑁 ∈ (ℤ𝑀))
13 eluzel2 11692 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1412, 13syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑀 ∈ ℤ)
1510rexuz3 14088 . . . . . . 7 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
1614, 15syl 17 . . . . . 6 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
17 eluzelz 11697 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1812, 17syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑁 ∈ ℤ)
19 ulmres.w . . . . . . . 8 𝑊 = (ℤ𝑁)
2019rexuz3 14088 . . . . . . 7 (𝑁 ∈ ℤ → (∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
2118, 20syl 17 . . . . . 6 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
2216, 21bitr4d 271 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
2322ralbidv 2986 . . . 4 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟 ↔ ∀𝑟 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
24 ulmres.f . . . . . 6 (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
2524adantr 481 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
26 eqidd 2623 . . . . 5 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
27 eqidd 2623 . . . . 5 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
28 simprr 796 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝐺:𝑆⟶ℂ)
29 simprl 794 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑆 ∈ V)
3010, 14, 25, 26, 27, 28, 29ulm2 24139 . . . 4 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
31 uzss 11708 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
3212, 31syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (ℤ𝑁) ⊆ (ℤ𝑀))
3332, 19, 103sstr4g 3646 . . . . . 6 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → 𝑊𝑍)
3425, 33fssresd 6071 . . . . 5 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (𝐹𝑊):𝑊⟶(ℂ ↑𝑚 𝑆))
35 fvres 6207 . . . . . . 7 (𝑘𝑊 → ((𝐹𝑊)‘𝑘) = (𝐹𝑘))
3635ad2antrl 764 . . . . . 6 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ (𝑘𝑊𝑧𝑆)) → ((𝐹𝑊)‘𝑘) = (𝐹𝑘))
3736fveq1d 6193 . . . . 5 (((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) ∧ (𝑘𝑊𝑧𝑆)) → (((𝐹𝑊)‘𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
3819, 18, 34, 37, 27, 28, 29ulm2 24139 . . . 4 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → ((𝐹𝑊)(⇝𝑢𝑆)𝐺 ↔ ∀𝑟 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑟))
3923, 30, 383bitr4d 300 . . 3 ((𝜑 ∧ (𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ)) → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺))
4039ex 450 . 2 (𝜑 → ((𝑆 ∈ V ∧ 𝐺:𝑆⟶ℂ) → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺)))
414, 8, 40pm5.21ndd 369 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ (𝐹𝑊)(⇝𝑢𝑆)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574   class class class wbr 4653  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cc 9934   < clt 10074  cmin 10266  cz 11377  cuz 11687  +crp 11832  abscabs 13974  𝑢culm 24130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-ulm 24131
This theorem is referenced by:  pserdvlem2  24182
  Copyright terms: Public domain W3C validator