![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluzel2 | Structured version Visualization version GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6220 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) | |
2 | uzf 11690 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
3 | 2 | fdmi 6052 | . 2 ⊢ dom ℤ≥ = ℤ |
4 | 1, 3 | syl6eleq 2711 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 𝒫 cpw 4158 dom cdm 5114 ‘cfv 5888 ℤcz 11377 ℤ≥cuz 11687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-cnex 9992 ax-resscn 9993 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-neg 10269 df-z 11378 df-uz 11688 |
This theorem is referenced by: eluz2 11693 uztrn 11704 uzneg 11706 uzss 11708 uz11 11710 eluzadd 11716 uzm1 11718 uzin 11720 uzind4 11746 uzsupss 11780 elfz5 12334 elfzel1 12341 eluzfz1 12348 fzsplit2 12366 fzopth 12378 ssfzunsn 12387 fzpred 12389 fzpreddisj 12390 uzsplit 12412 uzdisj 12413 fzm1 12420 uznfz 12423 nn0disj 12455 preduz 12461 fzolb 12476 fzoss2 12496 fzouzdisj 12504 ige2m2fzo 12530 fzen2 12768 seqp1 12816 seqcl 12821 seqfeq2 12824 seqfveq 12825 seqshft2 12827 seqsplit 12834 seqcaopr3 12836 seqf1olem2a 12839 seqf1olem1 12840 seqf1olem2 12841 seqid 12846 seqhomo 12848 seqz 12849 leexp2a 12916 hashfz 13214 fzsdom2 13215 hashfzo 13216 hashfzp1 13218 seqcoll 13248 rexanuz2 14089 cau4 14096 clim2ser 14385 clim2ser2 14386 climserle 14393 caurcvg 14407 caucvg 14409 fsumcvg 14443 fsumcvg2 14458 fsumsers 14459 fsumm1 14480 fsum1p 14482 fsumrev2 14514 telfsumo 14534 fsumparts 14538 cvgcmp 14548 cvgcmpub 14549 cvgcmpce 14550 isumsplit 14572 clim2prod 14620 clim2div 14621 prodfrec 14627 ntrivcvgtail 14632 fprodcvg 14660 fprodser 14679 fprodm1 14697 fprodeq0 14705 pcaddlem 15592 vdwnnlem2 15700 prmlem0 15812 gsumval2a 17279 telgsumfzs 18386 dvfsumle 23784 dvfsumge 23785 dvfsumabs 23786 coeid3 23996 ulmres 24142 ulmss 24151 chtdif 24884 ppidif 24889 bcmono 25002 axlowdimlem6 25827 inffz 31614 inffzOLD 31615 mettrifi 33553 jm2.25 37566 jm2.16nn0 37571 dvgrat 38511 ssinc 39264 ssdec 39265 fzdifsuc2 39525 iuneqfzuzlem 39550 ssuzfz 39565 ioodvbdlimc1lem2 40147 ioodvbdlimc2lem 40149 carageniuncllem1 40735 caratheodorylem1 40740 |
Copyright terms: Public domain | W3C validator |