MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdvlem2 Structured version   Visualization version   GIF version

Theorem pserdvlem2 24182
Description: Lemma for pserdv 24183. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
pserdv.b 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
Assertion
Ref Expression
pserdvlem2 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Distinct variable groups:   𝑗,𝑎,𝑘,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑘,𝑦   𝐵,𝑗,𝑘,𝑥,𝑦   𝑗,𝐺,𝑘,𝑟,𝑦   𝑆,𝑎,𝑗,𝑘,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐵(𝑛,𝑟,𝑎)   𝑅(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem pserdvlem2
Dummy variables 𝑚 𝑠 𝑤 𝑧 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11722 . 2 0 = (ℤ‘0)
2 cnelprrecn 10029 . . 3 ℂ ∈ {ℝ, ℂ}
32a1i 11 . 2 ((𝜑𝑎𝑆) → ℂ ∈ {ℝ, ℂ})
4 0zd 11389 . 2 ((𝜑𝑎𝑆) → 0 ∈ ℤ)
5 fzfid 12772 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → (0...𝑘) ∈ Fin)
6 pserf.g . . . . . . . 8 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
7 pserf.a . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
87ad3antrrr 766 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → 𝐴:ℕ0⟶ℂ)
9 pserdv.b . . . . . . . . . . 11 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
10 cnxmet 22576 . . . . . . . . . . . . 13 (abs ∘ − ) ∈ (∞Met‘ℂ)
1110a1i 11 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (abs ∘ − ) ∈ (∞Met‘ℂ))
12 0cnd 10033 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 0 ∈ ℂ)
13 pserf.f . . . . . . . . . . . . . . 15 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
14 pserf.r . . . . . . . . . . . . . . 15 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
15 psercn.s . . . . . . . . . . . . . . 15 𝑆 = (abs “ (0[,)𝑅))
16 psercn.m . . . . . . . . . . . . . . 15 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
176, 13, 7, 14, 15, 16pserdvlem1 24181 . . . . . . . . . . . . . 14 ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
1817simp1d 1073 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+)
1918rpxrd 11873 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*)
20 blssm 22223 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
2111, 12, 19, 20syl3anc 1326 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
229, 21syl5eqss 3649 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝐵 ⊆ ℂ)
2322adantr 481 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) → 𝐵 ⊆ ℂ)
2423sselda 3603 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
256, 8, 24psergf 24166 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → (𝐺𝑦):ℕ0⟶ℂ)
26 elfznn0 12433 . . . . . . 7 (𝑖 ∈ (0...𝑘) → 𝑖 ∈ ℕ0)
27 ffvelrn 6357 . . . . . . 7 (((𝐺𝑦):ℕ0⟶ℂ ∧ 𝑖 ∈ ℕ0) → ((𝐺𝑦)‘𝑖) ∈ ℂ)
2825, 26, 27syl2an 494 . . . . . 6 (((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (0...𝑘)) → ((𝐺𝑦)‘𝑖) ∈ ℂ)
295, 28fsumcl 14464 . . . . 5 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖) ∈ ℂ)
30 eqid 2622 . . . . 5 (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖))
3129, 30fmptd 6385 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)):𝐵⟶ℂ)
32 cnex 10017 . . . . 5 ℂ ∈ V
33 ovex 6678 . . . . . 6 (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∈ V
349, 33eqeltri 2697 . . . . 5 𝐵 ∈ V
3532, 34elmap 7886 . . . 4 ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)) ∈ (ℂ ↑𝑚 𝐵) ↔ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)):𝐵⟶ℂ)
3631, 35sylibr 224 . . 3 (((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)) ∈ (ℂ ↑𝑚 𝐵))
37 eqid 2622 . . 3 (𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖))) = (𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))
3836, 37fmptd 6385 . 2 ((𝜑𝑎𝑆) → (𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖))):ℕ0⟶(ℂ ↑𝑚 𝐵))
396, 13, 7, 14, 15, 16psercn 24180 . . . . 5 (𝜑𝐹 ∈ (𝑆cn→ℂ))
40 cncff 22696 . . . . 5 (𝐹 ∈ (𝑆cn→ℂ) → 𝐹:𝑆⟶ℂ)
4139, 40syl 17 . . . 4 (𝜑𝐹:𝑆⟶ℂ)
4241adantr 481 . . 3 ((𝜑𝑎𝑆) → 𝐹:𝑆⟶ℂ)
436, 13, 7, 14, 15, 17psercnlem2 24178 . . . . . 6 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∧ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ∧ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ⊆ 𝑆))
4443simp2d 1074 . . . . 5 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))))
459, 44syl5eqss 3649 . . . 4 ((𝜑𝑎𝑆) → 𝐵 ⊆ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))))
4643simp3d 1075 . . . 4 ((𝜑𝑎𝑆) → (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ⊆ 𝑆)
4745, 46sstrd 3613 . . 3 ((𝜑𝑎𝑆) → 𝐵𝑆)
4842, 47fssresd 6071 . 2 ((𝜑𝑎𝑆) → (𝐹𝐵):𝐵⟶ℂ)
49 0zd 11389 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 0 ∈ ℤ)
50 eqidd 2623 . . . . 5 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑧)‘𝑗) = ((𝐺𝑧)‘𝑗))
517ad2antrr 762 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝐴:ℕ0⟶ℂ)
5222sselda 3603 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑧 ∈ ℂ)
536, 51, 52psergf 24166 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝐺𝑧):ℕ0⟶ℂ)
5453ffvelrnda 6359 . . . . 5 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑧)‘𝑗) ∈ ℂ)
5552abscld 14175 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘𝑧) ∈ ℝ)
5655rexrd 10089 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘𝑧) ∈ ℝ*)
5719adantr 481 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*)
58 iccssxr 12256 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
596, 7, 14radcnvcl 24171 . . . . . . . . 9 (𝜑𝑅 ∈ (0[,]+∞))
6058, 59sseldi 3601 . . . . . . . 8 (𝜑𝑅 ∈ ℝ*)
6160ad2antrr 762 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑅 ∈ ℝ*)
62 0cn 10032 . . . . . . . . . 10 0 ∈ ℂ
63 eqid 2622 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
6463cnmetdval 22574 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
6552, 62, 64sylancl 694 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
6652subid1d 10381 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧 − 0) = 𝑧)
6766fveq2d 6195 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘(𝑧 − 0)) = (abs‘𝑧))
6865, 67eqtrd 2656 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧(abs ∘ − )0) = (abs‘𝑧))
69 simpr 477 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑧𝐵)
7069, 9syl6eleq 2711 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑧 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)))
7110a1i 11 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs ∘ − ) ∈ (∞Met‘ℂ))
72 0cnd 10033 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 0 ∈ ℂ)
73 elbl3 22197 . . . . . . . . . 10 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ↔ (𝑧(abs ∘ − )0) < (((abs‘𝑎) + 𝑀) / 2)))
7471, 57, 72, 52, 73syl22anc 1327 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ↔ (𝑧(abs ∘ − )0) < (((abs‘𝑎) + 𝑀) / 2)))
7570, 74mpbid 222 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧(abs ∘ − )0) < (((abs‘𝑎) + 𝑀) / 2))
7668, 75eqbrtrrd 4677 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘𝑧) < (((abs‘𝑎) + 𝑀) / 2))
7717simp3d 1075 . . . . . . . 8 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅)
7877adantr 481 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅)
7956, 57, 61, 76, 78xrlttrd 11990 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘𝑧) < 𝑅)
806, 51, 14, 52, 79radcnvlt2 24173 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → seq0( + , (𝐺𝑧)) ∈ dom ⇝ )
811, 49, 50, 54, 80isumclim2 14489 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → seq0( + , (𝐺𝑧)) ⇝ Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗))
8247sselda 3603 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑧𝑆)
83 fveq2 6191 . . . . . . . 8 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
8483fveq1d 6193 . . . . . . 7 (𝑦 = 𝑧 → ((𝐺𝑦)‘𝑗) = ((𝐺𝑧)‘𝑗))
8584sumeq2sdv 14435 . . . . . 6 (𝑦 = 𝑧 → Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) = Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗))
86 sumex 14418 . . . . . 6 Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗) ∈ V
8785, 13, 86fvmpt 6282 . . . . 5 (𝑧𝑆 → (𝐹𝑧) = Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗))
8882, 87syl 17 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝐹𝑧) = Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗))
8981, 88breqtrrd 4681 . . 3 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → seq0( + , (𝐺𝑧)) ⇝ (𝐹𝑧))
90 oveq2 6658 . . . . . . . . . . 11 (𝑘 = 𝑚 → (0...𝑘) = (0...𝑚))
9190sumeq1d 14431 . . . . . . . . . 10 (𝑘 = 𝑚 → Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖) = Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))
9291mpteq2dv 4745 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)))
9334mptex 6486 . . . . . . . . 9 (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)) ∈ V
9492, 37, 93fvmpt 6282 . . . . . . . 8 (𝑚 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)))
9594adantl 482 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)))
9695fveq1d 6193 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧) = ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))‘𝑧))
9783fveq1d 6193 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝐺𝑦)‘𝑖) = ((𝐺𝑧)‘𝑖))
9897sumeq2sdv 14435 . . . . . . . 8 (𝑦 = 𝑧 → Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖) = Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖))
99 eqid 2622 . . . . . . . 8 (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))
100 sumex 14418 . . . . . . . 8 Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖) ∈ V
10198, 99, 100fvmpt 6282 . . . . . . 7 (𝑧𝐵 → ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))‘𝑧) = Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖))
102101ad2antlr 763 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))‘𝑧) = Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖))
103 eqidd 2623 . . . . . . 7 (((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐺𝑧)‘𝑖) = ((𝐺𝑧)‘𝑖))
104 simpr 477 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
105104, 1syl6eleq 2711 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ (ℤ‘0))
10653adantr 481 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐺𝑧):ℕ0⟶ℂ)
107 elfznn0 12433 . . . . . . . 8 (𝑖 ∈ (0...𝑚) → 𝑖 ∈ ℕ0)
108 ffvelrn 6357 . . . . . . . 8 (((𝐺𝑧):ℕ0⟶ℂ ∧ 𝑖 ∈ ℕ0) → ((𝐺𝑧)‘𝑖) ∈ ℂ)
109106, 107, 108syl2an 494 . . . . . . 7 (((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐺𝑧)‘𝑖) ∈ ℂ)
110103, 105, 109fsumser 14461 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖) = (seq0( + , (𝐺𝑧))‘𝑚))
11196, 102, 1103eqtrd 2660 . . . . 5 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧) = (seq0( + , (𝐺𝑧))‘𝑚))
112111mpteq2dva 4744 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑚 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧)) = (𝑚 ∈ ℕ0 ↦ (seq0( + , (𝐺𝑧))‘𝑚)))
113 0z 11388 . . . . . . 7 0 ∈ ℤ
114 seqfn 12813 . . . . . . 7 (0 ∈ ℤ → seq0( + , (𝐺𝑧)) Fn (ℤ‘0))
115113, 114ax-mp 5 . . . . . 6 seq0( + , (𝐺𝑧)) Fn (ℤ‘0)
1161fneq2i 5986 . . . . . 6 (seq0( + , (𝐺𝑧)) Fn ℕ0 ↔ seq0( + , (𝐺𝑧)) Fn (ℤ‘0))
117115, 116mpbir 221 . . . . 5 seq0( + , (𝐺𝑧)) Fn ℕ0
118 dffn5 6241 . . . . 5 (seq0( + , (𝐺𝑧)) Fn ℕ0 ↔ seq0( + , (𝐺𝑧)) = (𝑚 ∈ ℕ0 ↦ (seq0( + , (𝐺𝑧))‘𝑚)))
119117, 118mpbi 220 . . . 4 seq0( + , (𝐺𝑧)) = (𝑚 ∈ ℕ0 ↦ (seq0( + , (𝐺𝑧))‘𝑚))
120112, 119syl6eqr 2674 . . 3 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑚 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧)) = seq0( + , (𝐺𝑧)))
121 fvres 6207 . . . 4 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
122121adantl 482 . . 3 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
12389, 120, 1223brtr4d 4685 . 2 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑚 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧)) ⇝ ((𝐹𝐵)‘𝑧))
12494adantl 482 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)))
125124oveq2d 6666 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (ℂ D ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)) = (ℂ D (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))))
126 eqid 2622 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
127126cnfldtop 22587 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
128126cnfldtopon 22586 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
129128toponunii 20721 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
130129restid 16094 . . . . . . . 8 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
131127, 130ax-mp 5 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
132131eqcomi 2631 . . . . . 6 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
1332a1i 11 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → ℂ ∈ {ℝ, ℂ})
134126cnfldtopn 22585 . . . . . . . . . 10 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
135134blopn 22305 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∈ (TopOpen‘ℂfld))
13611, 12, 19, 135syl3anc 1326 . . . . . . . 8 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∈ (TopOpen‘ℂfld))
1379, 136syl5eqel 2705 . . . . . . 7 ((𝜑𝑎𝑆) → 𝐵 ∈ (TopOpen‘ℂfld))
138137adantr 481 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → 𝐵 ∈ (TopOpen‘ℂfld))
139 fzfid 12772 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (0...𝑚) ∈ Fin)
1407ad2antrr 762 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
1411403ad2ant1 1082 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → 𝐴:ℕ0⟶ℂ)
14222adantr 481 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → 𝐵 ⊆ ℂ)
143142sselda 3603 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
1441433adant2 1080 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
1456, 141, 144psergf 24166 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → (𝐺𝑦):ℕ0⟶ℂ)
1461073ad2ant2 1083 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → 𝑖 ∈ ℕ0)
147145, 146ffvelrnd 6360 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → ((𝐺𝑦)‘𝑖) ∈ ℂ)
1482a1i 11 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → ℂ ∈ {ℝ, ℂ})
149 ffvelrn 6357 . . . . . . . . . . 11 ((𝐴:ℕ0⟶ℂ ∧ 𝑖 ∈ ℕ0) → (𝐴𝑖) ∈ ℂ)
150140, 107, 149syl2an 494 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (𝐴𝑖) ∈ ℂ)
151150adantr 481 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → (𝐴𝑖) ∈ ℂ)
152143adantlr 751 . . . . . . . . . 10 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
153 id 22 . . . . . . . . . . 11 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
154107adantl 482 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → 𝑖 ∈ ℕ0)
155 expcl 12878 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑦𝑖) ∈ ℂ)
156153, 154, 155syl2anr 495 . . . . . . . . . 10 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ ℂ) → (𝑦𝑖) ∈ ℂ)
157152, 156syldan 487 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → (𝑦𝑖) ∈ ℂ)
158151, 157mulcld 10060 . . . . . . . 8 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → ((𝐴𝑖) · (𝑦𝑖)) ∈ ℂ)
159 ovexd 6680 . . . . . . . 8 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ V)
160 c0ex 10034 . . . . . . . . . . 11 0 ∈ V
161 ovex 6678 . . . . . . . . . . 11 (𝑖 · (𝑦↑(𝑖 − 1))) ∈ V
162160, 161ifex 4156 . . . . . . . . . 10 if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ V
163162a1i 11 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ V)
164162a1i 11 . . . . . . . . . 10 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ ℂ) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ V)
165 dvexp2 23717 . . . . . . . . . . 11 (𝑖 ∈ ℕ0 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑖))) = (𝑦 ∈ ℂ ↦ if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))
166154, 165syl 17 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑖))) = (𝑦 ∈ ℂ ↦ if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))
16722ad2antrr 762 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → 𝐵 ⊆ ℂ)
168137ad2antrr 762 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → 𝐵 ∈ (TopOpen‘ℂfld))
169148, 156, 164, 166, 167, 132, 126, 168dvmptres 23726 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦𝐵 ↦ (𝑦𝑖))) = (𝑦𝐵 ↦ if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))
170148, 157, 163, 169, 150dvmptcmul 23727 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦𝐵 ↦ ((𝐴𝑖) · (𝑦𝑖)))) = (𝑦𝐵 ↦ ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
171148, 158, 159, 170dvmptcl 23722 . . . . . . 7 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
1721713impa 1259 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
173107ad2antlr 763 . . . . . . . . . 10 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → 𝑖 ∈ ℕ0)
1746pserval2 24165 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → ((𝐺𝑦)‘𝑖) = ((𝐴𝑖) · (𝑦𝑖)))
175152, 173, 174syl2anc 693 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → ((𝐺𝑦)‘𝑖) = ((𝐴𝑖) · (𝑦𝑖)))
176175mpteq2dva 4744 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (𝑦𝐵 ↦ ((𝐺𝑦)‘𝑖)) = (𝑦𝐵 ↦ ((𝐴𝑖) · (𝑦𝑖))))
177176oveq2d 6666 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦𝐵 ↦ ((𝐺𝑦)‘𝑖))) = (ℂ D (𝑦𝐵 ↦ ((𝐴𝑖) · (𝑦𝑖)))))
178177, 170eqtrd 2656 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦𝐵 ↦ ((𝐺𝑦)‘𝑖))) = (𝑦𝐵 ↦ ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
179132, 126, 133, 138, 139, 147, 172, 178dvmptfsum 23738 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (ℂ D (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
180125, 179eqtrd 2656 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (ℂ D ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
181180mpteq2dva 4744 . . 3 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ (ℂ D ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))))
182 nnssnn0 11295 . . . . . 6 ℕ ⊆ ℕ0
183 resmpt 5449 . . . . . 6 (ℕ ⊆ ℕ0 → ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))))
184182, 183ax-mp 5 . . . . 5 ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
185 oveq1 6657 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝑎𝑖) = (𝑥𝑖))
186185oveq2d 6666 . . . . . . . . . . 11 (𝑎 = 𝑥 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖)))
187186mpteq2dv 4745 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖))))
188 oveq1 6657 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (𝑖 + 1) = (𝑛 + 1))
189188fveq2d 6195 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (𝐴‘(𝑖 + 1)) = (𝐴‘(𝑛 + 1)))
190188, 189oveq12d 6668 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → ((𝑖 + 1) · (𝐴‘(𝑖 + 1))) = ((𝑛 + 1) · (𝐴‘(𝑛 + 1))))
191 oveq2 6658 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → (𝑥𝑖) = (𝑥𝑛))
192190, 191oveq12d 6668 . . . . . . . . . . . 12 (𝑖 = 𝑛 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖)) = (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥𝑛)))
193192cbvmptv 4750 . . . . . . . . . . 11 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖))) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥𝑛)))
194 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
195194fveq2d 6195 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝐴‘(𝑚 + 1)) = (𝐴‘(𝑛 + 1)))
196194, 195oveq12d 6668 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → ((𝑚 + 1) · (𝐴‘(𝑚 + 1))) = ((𝑛 + 1) · (𝐴‘(𝑛 + 1))))
197 eqid 2622 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1)))) = (𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))
198 ovex 6678 . . . . . . . . . . . . . 14 ((𝑛 + 1) · (𝐴‘(𝑛 + 1))) ∈ V
199196, 197, 198fvmpt 6282 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) = ((𝑛 + 1) · (𝐴‘(𝑛 + 1))))
200199oveq1d 6665 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛)) = (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥𝑛)))
201200mpteq2ia 4740 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛))) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥𝑛)))
202193, 201eqtr4i 2647 . . . . . . . . . 10 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖))) = (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛)))
203187, 202syl6eq 2672 . . . . . . . . 9 (𝑎 = 𝑥 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))) = (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛))))
204203cbvmptv 4750 . . . . . . . 8 (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)))) = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛))))
205 fveq2 6191 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))
206205fveq1d 6193 . . . . . . . . . 10 (𝑦 = 𝑧 → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧)‘𝑘))
207206sumeq2sdv 14435 . . . . . . . . 9 (𝑦 = 𝑧 → Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧)‘𝑘))
208207cbvmptv 4750 . . . . . . . 8 (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘)) = (𝑧𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧)‘𝑘))
209 peano2nn0 11333 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
210209adantl 482 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) ∈ ℕ0)
211210nn0cnd 11353 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) ∈ ℂ)
212140, 210ffvelrnd 6360 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝐴‘(𝑚 + 1)) ∈ ℂ)
213211, 212mulcld 10060 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · (𝐴‘(𝑚 + 1))) ∈ ℂ)
214213, 197fmptd 6385 . . . . . . . 8 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1)))):ℕ0⟶ℂ)
215 fveq2 6191 . . . . . . . . . . . 12 (𝑟 = 𝑗 → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟) = ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗))
216215seqeq3d 12809 . . . . . . . . . . 11 (𝑟 = 𝑗 → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) = seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗)))
217216eleq1d 2686 . . . . . . . . . 10 (𝑟 = 𝑗 → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ ↔ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗)) ∈ dom ⇝ ))
218217cbvrabv 3199 . . . . . . . . 9 {𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ } = {𝑗 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗)) ∈ dom ⇝ }
219218supeq1i 8353 . . . . . . . 8 sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑗 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗)) ∈ dom ⇝ }, ℝ*, < )
220205seqeq3d 12809 . . . . . . . . . . . 12 (𝑦 = 𝑧 → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)) = seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧)))
221220fveq1d 6193 . . . . . . . . . . 11 (𝑦 = 𝑧 → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑗))
222221cbvmptv 4750 . . . . . . . . . 10 (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) = (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑗))
223 fveq2 6191 . . . . . . . . . . 11 (𝑗 = 𝑚 → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑗) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑚))
224223mpteq2dv 4745 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑗)) = (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑚)))
225222, 224syl5eq 2668 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) = (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑚)))
226225cbvmptv 4750 . . . . . . . 8 (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗))) = (𝑚 ∈ ℕ0 ↦ (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑚)))
22718rpred 11872 . . . . . . . 8 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ)
2286, 13, 7, 14, 15, 16psercnlem1 24179 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
229228simp1d 1073 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
230229rpxrd 11873 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ*)
231204, 214, 219radcnvcl 24171 . . . . . . . . . 10 ((𝜑𝑎𝑆) → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ (0[,]+∞))
23258, 231sseldi 3601 . . . . . . . . 9 ((𝜑𝑎𝑆) → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
233228simp2d 1074 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
234 cnvimass 5485 . . . . . . . . . . . . . . . 16 (abs “ (0[,)𝑅)) ⊆ dom abs
235 absf 14077 . . . . . . . . . . . . . . . . 17 abs:ℂ⟶ℝ
236235fdmi 6052 . . . . . . . . . . . . . . . 16 dom abs = ℂ
237234, 236sseqtri 3637 . . . . . . . . . . . . . . 15 (abs “ (0[,)𝑅)) ⊆ ℂ
23815, 237eqsstri 3635 . . . . . . . . . . . . . 14 𝑆 ⊆ ℂ
239238a1i 11 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℂ)
240239sselda 3603 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
241240abscld 14175 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
242229rpred 11872 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
243 avglt2 11271 . . . . . . . . . . 11 (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀))
244241, 242, 243syl2anc 693 . . . . . . . . . 10 ((𝜑𝑎𝑆) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀))
245233, 244mpbid 222 . . . . . . . . 9 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑀)
246229rpge0d 11876 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 0 ≤ 𝑀)
247242, 246absidd 14161 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑀) = 𝑀)
248229rpcnd 11874 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑀 ∈ ℂ)
249 oveq1 6657 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑀 → (𝑤𝑖) = (𝑀𝑖))
250249oveq2d 6666 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑀 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖)))
251250mpteq2dv 4745 . . . . . . . . . . . . . . 15 (𝑤 = 𝑀 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))))
252 oveq1 6657 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑤 → (𝑎𝑖) = (𝑤𝑖))
253252oveq2d 6666 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑤 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖)))
254253mpteq2dv 4745 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑤 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖))))
255254cbvmptv 4750 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)))) = (𝑤 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖))))
256 nn0ex 11298 . . . . . . . . . . . . . . . 16 0 ∈ V
257256mptex 6486 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))) ∈ V
258251, 255, 257fvmpt 6282 . . . . . . . . . . . . . 14 (𝑀 ∈ ℂ → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑀) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))))
259248, 258syl 17 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑀) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))))
260259seqeq3d 12809 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑀)) = seq0( + , (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖)))))
261 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → (𝐴𝑛) = (𝐴𝑖))
262 oveq2 6658 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → (𝑥𝑛) = (𝑥𝑖))
263261, 262oveq12d 6668 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑖) · (𝑥𝑖)))
264263cbvmptv 4750 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑥𝑖)))
265 oveq1 6657 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥𝑖) = (𝑦𝑖))
266265oveq2d 6666 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((𝐴𝑖) · (𝑥𝑖)) = ((𝐴𝑖) · (𝑦𝑖)))
267266mpteq2dv 4745 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑥𝑖))) = (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑦𝑖))))
268264, 267syl5eq 2668 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑦𝑖))))
269268cbvmptv 4750 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))) = (𝑦 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑦𝑖))))
2706, 269eqtri 2644 . . . . . . . . . . . . 13 𝐺 = (𝑦 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑦𝑖))))
271 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑠 → (𝐺𝑟) = (𝐺𝑠))
272271seqeq3d 12809 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑠 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺𝑠)))
273272eleq1d 2686 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑠 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺𝑠)) ∈ dom ⇝ ))
274273cbvrabv 3199 . . . . . . . . . . . . . . 15 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } = {𝑠 ∈ ℝ ∣ seq0( + , (𝐺𝑠)) ∈ dom ⇝ }
275274supeq1i 8353 . . . . . . . . . . . . . 14 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑠 ∈ ℝ ∣ seq0( + , (𝐺𝑠)) ∈ dom ⇝ }, ℝ*, < )
27614, 275eqtri 2644 . . . . . . . . . . . . 13 𝑅 = sup({𝑠 ∈ ℝ ∣ seq0( + , (𝐺𝑠)) ∈ dom ⇝ }, ℝ*, < )
277 eqid 2622 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖)))
2787adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → 𝐴:ℕ0⟶ℂ)
279228simp3d 1075 . . . . . . . . . . . . . 14 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
280247, 279eqbrtrd 4675 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (abs‘𝑀) < 𝑅)
281270, 276, 277, 278, 248, 280dvradcnv 24175 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → seq0( + , (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖)))) ∈ dom ⇝ )
282260, 281eqeltrd 2701 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑀)) ∈ dom ⇝ )
283204, 214, 219, 248, 282radcnvle 24174 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑀) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
284247, 283eqbrtrrd 4677 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑀 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
28519, 230, 232, 245, 284xrltletrd 11992 . . . . . . . 8 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
286204, 208, 214, 219, 226, 227, 285, 45pserulm 24176 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘)))
28722sselda 3603 . . . . . . . . . . . . 13 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
288 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → (𝑎𝑖) = (𝑦𝑖))
289288oveq2d 6666 . . . . . . . . . . . . . . 15 (𝑎 = 𝑦 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))
290289mpteq2dv 4745 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
291 eqid 2622 . . . . . . . . . . . . . 14 (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)))) = (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))
292256mptex 6486 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))) ∈ V
293290, 291, 292fvmpt 6282 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
294287, 293syl 17 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
295294adantr 481 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
296295fveq1d 6193 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘))
297 oveq1 6657 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝑖 + 1) = (𝑘 + 1))
298297fveq2d 6195 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝐴‘(𝑖 + 1)) = (𝐴‘(𝑘 + 1)))
299297, 298oveq12d 6668 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → ((𝑖 + 1) · (𝐴‘(𝑖 + 1))) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
300 oveq2 6658 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝑦𝑖) = (𝑦𝑘))
301299, 300oveq12d 6668 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
302 eqid 2622 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))
303 ovex 6678 . . . . . . . . . . . 12 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V
304301, 302, 303fvmpt 6282 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
305304adantl 482 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
306296, 305eqtrd 2656 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
307306sumeq2dv 14433 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
308307mpteq2dva 4744 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
309286, 308breqtrd 4679 . . . . . 6 ((𝜑𝑎𝑆) → (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
310 nnuz 11723 . . . . . . . 8 ℕ = (ℤ‘1)
311 1e0p1 11552 . . . . . . . . 9 1 = (0 + 1)
312311fveq2i 6194 . . . . . . . 8 (ℤ‘1) = (ℤ‘(0 + 1))
313310, 312eqtri 2644 . . . . . . 7 ℕ = (ℤ‘(0 + 1))
314 1zzd 11408 . . . . . . 7 ((𝜑𝑎𝑆) → 1 ∈ ℤ)
315 0zd 11389 . . . . . . . . . . . . 13 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → 0 ∈ ℤ)
316 peano2nn0 11333 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
317316nn0cnd 11353 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℂ)
318317adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℂ)
3197ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → 𝐴:ℕ0⟶ℂ)
320 ffvelrn 6357 . . . . . . . . . . . . . . . . . . 19 ((𝐴:ℕ0⟶ℂ ∧ (𝑖 + 1) ∈ ℕ0) → (𝐴‘(𝑖 + 1)) ∈ ℂ)
321319, 316, 320syl2an 494 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → (𝐴‘(𝑖 + 1)) ∈ ℂ)
322318, 321mulcld 10060 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → ((𝑖 + 1) · (𝐴‘(𝑖 + 1))) ∈ ℂ)
323287, 155sylan 488 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → (𝑦𝑖) ∈ ℂ)
324322, 323mulcld 10060 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)) ∈ ℂ)
325324, 302fmptd 6385 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))):ℕ0⟶ℂ)
326294feq1d 6030 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦):ℕ0⟶ℂ ↔ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))):ℕ0⟶ℂ))
327325, 326mpbird 247 . . . . . . . . . . . . . 14 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦):ℕ0⟶ℂ)
328327ffvelrnda 6359 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℕ0) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑚) ∈ ℂ)
3291, 315, 328serf 12829 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)):ℕ0⟶ℂ)
330329ffvelrnda 6359 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑗 ∈ ℕ0) → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗) ∈ ℂ)
331330an32s 846 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑦𝐵) → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗) ∈ ℂ)
332 eqid 2622 . . . . . . . . . 10 (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) = (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗))
333331, 332fmptd 6385 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑗 ∈ ℕ0) → (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)):𝐵⟶ℂ)
33432, 34elmap 7886 . . . . . . . . 9 ((𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) ∈ (ℂ ↑𝑚 𝐵) ↔ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)):𝐵⟶ℂ)
335333, 334sylibr 224 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑗 ∈ ℕ0) → (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) ∈ (ℂ ↑𝑚 𝐵))
336 eqid 2622 . . . . . . . 8 (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗))) = (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))
337335, 336fmptd 6385 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗))):ℕ0⟶(ℂ ↑𝑚 𝐵))
338 elfznn 12370 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℕ)
339338nnne0d 11065 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1...𝑚) → 𝑖 ≠ 0)
340339neneqd 2799 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑚) → ¬ 𝑖 = 0)
341340iffalsed 4097 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑚) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) = (𝑖 · (𝑦↑(𝑖 − 1))))
342341oveq2d 6666 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑚) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = ((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))))
343342sumeq2i 14429 . . . . . . . . . . . 12 Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1))))
344 1zzd 11408 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → 1 ∈ ℤ)
345 nnz 11399 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
346345ad2antlr 763 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → 𝑚 ∈ ℤ)
347278ad2antrr 762 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → 𝐴:ℕ0⟶ℂ)
348338nnnn0d 11351 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℕ0)
349347, 348, 149syl2an 494 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → (𝐴𝑖) ∈ ℂ)
350338adantl 482 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℕ)
351350nncnd 11036 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℂ)
352287adantlr 751 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
353 nnm1nn0 11334 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ → (𝑖 − 1) ∈ ℕ0)
354338, 353syl 17 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1...𝑚) → (𝑖 − 1) ∈ ℕ0)
355 expcl 12878 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℂ ∧ (𝑖 − 1) ∈ ℕ0) → (𝑦↑(𝑖 − 1)) ∈ ℂ)
356352, 354, 355syl2an 494 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → (𝑦↑(𝑖 − 1)) ∈ ℂ)
357351, 356mulcld 10060 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → (𝑖 · (𝑦↑(𝑖 − 1))) ∈ ℂ)
358349, 357mulcld 10060 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → ((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ ℂ)
359 fveq2 6191 . . . . . . . . . . . . . 14 (𝑖 = (𝑘 + 1) → (𝐴𝑖) = (𝐴‘(𝑘 + 1)))
360 id 22 . . . . . . . . . . . . . . 15 (𝑖 = (𝑘 + 1) → 𝑖 = (𝑘 + 1))
361 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑘 + 1) → (𝑖 − 1) = ((𝑘 + 1) − 1))
362361oveq2d 6666 . . . . . . . . . . . . . . 15 (𝑖 = (𝑘 + 1) → (𝑦↑(𝑖 − 1)) = (𝑦↑((𝑘 + 1) − 1)))
363360, 362oveq12d 6668 . . . . . . . . . . . . . 14 (𝑖 = (𝑘 + 1) → (𝑖 · (𝑦↑(𝑖 − 1))) = ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))))
364359, 363oveq12d 6668 . . . . . . . . . . . . 13 (𝑖 = (𝑘 + 1) → ((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))) = ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))))
365344, 344, 346, 358, 364fsumshftm 14513 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))) = Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))))
366343, 365syl5eq 2668 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))))
367311oveq1i 6660 . . . . . . . . . . . . . 14 (1...𝑚) = ((0 + 1)...𝑚)
368 fzp1ss 12392 . . . . . . . . . . . . . . 15 (0 ∈ ℤ → ((0 + 1)...𝑚) ⊆ (0...𝑚))
369113, 368ax-mp 5 . . . . . . . . . . . . . 14 ((0 + 1)...𝑚) ⊆ (0...𝑚)
370367, 369eqsstri 3635 . . . . . . . . . . . . 13 (1...𝑚) ⊆ (0...𝑚)
371370a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → (1...𝑚) ⊆ (0...𝑚))
372342adantl 482 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = ((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))))
373372, 358eqeltrd 2701 . . . . . . . . . . . 12 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
374 eldif 3584 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ((0...𝑚) ∖ ((0 + 1)...𝑚)) ↔ (𝑖 ∈ (0...𝑚) ∧ ¬ 𝑖 ∈ ((0 + 1)...𝑚)))
375 elfzuz2 12346 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ (0...𝑚) → 𝑚 ∈ (ℤ‘0))
376 elfzp12 12419 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (ℤ‘0) → (𝑖 ∈ (0...𝑚) ↔ (𝑖 = 0 ∨ 𝑖 ∈ ((0 + 1)...𝑚))))
377375, 376syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (0...𝑚) → (𝑖 ∈ (0...𝑚) ↔ (𝑖 = 0 ∨ 𝑖 ∈ ((0 + 1)...𝑚))))
378377ibi 256 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0...𝑚) → (𝑖 = 0 ∨ 𝑖 ∈ ((0 + 1)...𝑚)))
379378ord 392 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0...𝑚) → (¬ 𝑖 = 0 → 𝑖 ∈ ((0 + 1)...𝑚)))
380379con1d 139 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0...𝑚) → (¬ 𝑖 ∈ ((0 + 1)...𝑚) → 𝑖 = 0))
381380imp 445 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0...𝑚) ∧ ¬ 𝑖 ∈ ((0 + 1)...𝑚)) → 𝑖 = 0)
382374, 381sylbi 207 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ((0...𝑚) ∖ ((0 + 1)...𝑚)) → 𝑖 = 0)
383367difeq2i 3725 . . . . . . . . . . . . . . . . 17 ((0...𝑚) ∖ (1...𝑚)) = ((0...𝑚) ∖ ((0 + 1)...𝑚))
384382, 383eleq2s 2719 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ((0...𝑚) ∖ (1...𝑚)) → 𝑖 = 0)
385384adantl 482 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → 𝑖 = 0)
386385iftrued 4094 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) = 0)
387386oveq2d 6666 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = ((𝐴𝑖) · 0))
388 eldifi 3732 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ((0...𝑚) ∖ (1...𝑚)) → 𝑖 ∈ (0...𝑚))
389388, 107syl 17 . . . . . . . . . . . . . . 15 (𝑖 ∈ ((0...𝑚) ∖ (1...𝑚)) → 𝑖 ∈ ℕ0)
390347, 389, 149syl2an 494 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → (𝐴𝑖) ∈ ℂ)
391390mul01d 10235 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → ((𝐴𝑖) · 0) = 0)
392387, 391eqtrd 2656 . . . . . . . . . . . 12 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = 0)
393 fzfid 12772 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → (0...𝑚) ∈ Fin)
394371, 373, 392, 393fsumss 14456 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))
395 1m1e0 11089 . . . . . . . . . . . . . 14 (1 − 1) = 0
396395oveq1i 6660 . . . . . . . . . . . . 13 ((1 − 1)...(𝑚 − 1)) = (0...(𝑚 − 1))
397396sumeq1i 14428 . . . . . . . . . . . 12 Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = Σ𝑘 ∈ (0...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))))
398 elfznn0 12433 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...(𝑚 − 1)) → 𝑘 ∈ ℕ0)
399398adantl 482 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝑘 ∈ ℕ0)
400399, 304syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
401352adantr 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝑦 ∈ ℂ)
402401, 293syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
403402fveq1d 6193 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘))
404347adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝐴:ℕ0⟶ℂ)
405 peano2nn0 11333 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
406399, 405syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑘 + 1) ∈ ℕ0)
407404, 406ffvelrnd 6360 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
408406nn0cnd 11353 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑘 + 1) ∈ ℂ)
409 expcl 12878 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑦𝑘) ∈ ℂ)
410352, 398, 409syl2an 494 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑦𝑘) ∈ ℂ)
411407, 408, 410mul12d 10245 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦𝑘))) = ((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑦𝑘))))
412399nn0cnd 11353 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝑘 ∈ ℂ)
413 ax-1cn 9994 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
414 pncan 10287 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
415412, 413, 414sylancl 694 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑘 + 1) − 1) = 𝑘)
416415oveq2d 6666 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑦↑((𝑘 + 1) − 1)) = (𝑦𝑘))
417416oveq2d 6666 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))) = ((𝑘 + 1) · (𝑦𝑘)))
418417oveq2d 6666 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦𝑘))))
419408, 407, 410mulassd 10063 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) = ((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑦𝑘))))
420411, 418, 4193eqtr4d 2666 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
421400, 403, 4203eqtr4d 2666 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))))
422 nnm1nn0 11334 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (𝑚 − 1) ∈ ℕ0)
423422adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) → (𝑚 − 1) ∈ ℕ0)
424423adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → (𝑚 − 1) ∈ ℕ0)
425424, 1syl6eleq 2711 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → (𝑚 − 1) ∈ (ℤ‘0))
426416, 410eqeltrd 2701 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑦↑((𝑘 + 1) − 1)) ∈ ℂ)
427408, 426mulcld 10060 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))) ∈ ℂ)
428407, 427mulcld 10060 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) ∈ ℂ)
429421, 425, 428fsumser 14461 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑘 ∈ (0...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1)))
430397, 429syl5eq 2668 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1)))
431366, 394, 4303eqtr3d 2664 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1)))
432431mpteq2dva 4744 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) = (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))))
433 fveq2 6191 . . . . . . . . . . . 12 (𝑗 = (𝑚 − 1) → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1)))
434433mpteq2dv 4745 . . . . . . . . . . 11 (𝑗 = (𝑚 − 1) → (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) = (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))))
43534mptex 6486 . . . . . . . . . . 11 (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))) ∈ V
436434, 336, 435fvmpt 6282 . . . . . . . . . 10 ((𝑚 − 1) ∈ ℕ0 → ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1)) = (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))))
437423, 436syl 17 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) → ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1)) = (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))))
438432, 437eqtr4d 2659 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) = ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1)))
439438mpteq2dva 4744 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) = (𝑚 ∈ ℕ ↦ ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1))))
4401, 313, 4, 314, 337, 439ulmshft 24144 . . . . . 6 ((𝜑𝑎𝑆) → ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) ↔ (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))))
441309, 440mpbid 222 . . . . 5 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
442184, 441syl5eqbr 4688 . . . 4 ((𝜑𝑎𝑆) → ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ)(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
443 1nn0 11308 . . . . . 6 1 ∈ ℕ0
444443a1i 11 . . . . 5 ((𝜑𝑎𝑆) → 1 ∈ ℕ0)
445 fzfid 12772 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦𝐵) → (0...𝑚) ∈ Fin)
446171an32s 846 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
447445, 446fsumcl 14464 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦𝐵) → Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
448 eqid 2622 . . . . . . . 8 (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))
449447, 448fmptd 6385 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))):𝐵⟶ℂ)
45032, 34elmap 7886 . . . . . . 7 ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) ∈ (ℂ ↑𝑚 𝐵) ↔ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))):𝐵⟶ℂ)
451449, 450sylibr 224 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) ∈ (ℂ ↑𝑚 𝐵))
452 eqid 2622 . . . . . 6 (𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) = (𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
453451, 452fmptd 6385 . . . . 5 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))):ℕ0⟶(ℂ ↑𝑚 𝐵))
4541, 310, 444, 453ulmres 24142 . . . 4 ((𝜑𝑎𝑆) → ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) ↔ ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ)(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))))
455442, 454mpbird 247 . . 3 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
456181, 455eqbrtrd 4675 . 2 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ (ℂ D ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
4571, 3, 4, 38, 48, 123, 456ulmdv 24157 1 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  ifcif 4086  {cpr 4179   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  cres 5116  cima 5117  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  supcsup 8346  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  +crp 11832  [,)cico 12177  [,]cicc 12178  ...cfz 12326  seqcseq 12801  cexp 12860  abscabs 13974  cli 14215  Σcsu 14416  t crest 16081  TopOpenctopn 16082  ∞Metcxmt 19731  ballcbl 19733  fldccnfld 19746  Topctop 20698  cnccncf 22679   D cdv 23627  𝑢culm 24130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-ulm 24131
This theorem is referenced by:  pserdv  24183
  Copyright terms: Public domain W3C validator