| Step | Hyp | Ref
| Expression |
| 1 | | nn0uz 11722 |
. 2
⊢
ℕ0 = (ℤ≥‘0) |
| 2 | | cnelprrecn 10029 |
. . 3
⊢ ℂ
∈ {ℝ, ℂ} |
| 3 | 2 | a1i 11 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ℂ ∈ {ℝ,
ℂ}) |
| 4 | | 0zd 11389 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ∈ ℤ) |
| 5 | | fzfid 12772 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦 ∈ 𝐵) → (0...𝑘) ∈ Fin) |
| 6 | | pserf.g |
. . . . . . . 8
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| 7 | | pserf.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 8 | 7 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦 ∈ 𝐵) → 𝐴:ℕ0⟶ℂ) |
| 9 | | pserdv.b |
. . . . . . . . . . 11
⊢ 𝐵 = (0(ball‘(abs ∘
− ))(((abs‘𝑎) +
𝑀) / 2)) |
| 10 | | cnxmet 22576 |
. . . . . . . . . . . . 13
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
| 11 | 10 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs ∘ − ) ∈
(∞Met‘ℂ)) |
| 12 | | 0cnd 10033 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ∈ ℂ) |
| 13 | | pserf.f |
. . . . . . . . . . . . . . 15
⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
| 14 | | pserf.r |
. . . . . . . . . . . . . . 15
⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) |
| 15 | | psercn.s |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
| 16 | | psercn.m |
. . . . . . . . . . . . . . 15
⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) |
| 17 | 6, 13, 7, 14, 15, 16 | pserdvlem1 24181 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧
(abs‘𝑎) <
(((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅)) |
| 18 | 17 | simp1d 1073 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈
ℝ+) |
| 19 | 18 | rpxrd 11873 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈
ℝ*) |
| 20 | | blssm 22223 |
. . . . . . . . . . . 12
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ (((abs‘𝑎) +
𝑀) / 2) ∈
ℝ*) → (0(ball‘(abs ∘ −
))(((abs‘𝑎) + 𝑀) / 2)) ⊆
ℂ) |
| 21 | 11, 12, 19, 20 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(ball‘(abs ∘ −
))(((abs‘𝑎) + 𝑀) / 2)) ⊆
ℂ) |
| 22 | 9, 21 | syl5eqss 3649 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐵 ⊆ ℂ) |
| 23 | 22 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) → 𝐵 ⊆
ℂ) |
| 24 | 23 | sselda 3603 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ℂ) |
| 25 | 6, 8, 24 | psergf 24166 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦 ∈ 𝐵) → (𝐺‘𝑦):ℕ0⟶ℂ) |
| 26 | | elfznn0 12433 |
. . . . . . 7
⊢ (𝑖 ∈ (0...𝑘) → 𝑖 ∈ ℕ0) |
| 27 | | ffvelrn 6357 |
. . . . . . 7
⊢ (((𝐺‘𝑦):ℕ0⟶ℂ ∧
𝑖 ∈
ℕ0) → ((𝐺‘𝑦)‘𝑖) ∈ ℂ) |
| 28 | 25, 26, 27 | syl2an 494 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ (0...𝑘)) → ((𝐺‘𝑦)‘𝑖) ∈ ℂ) |
| 29 | 5, 28 | fsumcl 14464 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦 ∈ 𝐵) → Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖) ∈ ℂ) |
| 30 | | eqid 2622 |
. . . . 5
⊢ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)) = (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)) |
| 31 | 29, 30 | fmptd 6385 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) → (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)):𝐵⟶ℂ) |
| 32 | | cnex 10017 |
. . . . 5
⊢ ℂ
∈ V |
| 33 | | ovex 6678 |
. . . . . 6
⊢
(0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∈ V |
| 34 | 9, 33 | eqeltri 2697 |
. . . . 5
⊢ 𝐵 ∈ V |
| 35 | 32, 34 | elmap 7886 |
. . . 4
⊢ ((𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)) ∈ (ℂ ↑𝑚
𝐵) ↔ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)):𝐵⟶ℂ) |
| 36 | 31, 35 | sylibr 224 |
. . 3
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) → (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)) ∈ (ℂ ↑𝑚
𝐵)) |
| 37 | | eqid 2622 |
. . 3
⊢ (𝑘 ∈ ℕ0
↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖))) = (𝑘 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖))) |
| 38 | 36, 37 | fmptd 6385 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑘 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖))):ℕ0⟶(ℂ
↑𝑚 𝐵)) |
| 39 | 6, 13, 7, 14, 15, 16 | psercn 24180 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) |
| 40 | | cncff 22696 |
. . . . 5
⊢ (𝐹 ∈ (𝑆–cn→ℂ) → 𝐹:𝑆⟶ℂ) |
| 41 | 39, 40 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
| 42 | 41 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐹:𝑆⟶ℂ) |
| 43 | 6, 13, 7, 14, 15, 17 | psercnlem2 24178 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ −
))(((abs‘𝑎) + 𝑀) / 2)) ∧ (0(ball‘(abs
∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ (◡abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ∧ (◡abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ⊆ 𝑆)) |
| 44 | 43 | simp2d 1074 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(ball‘(abs ∘ −
))(((abs‘𝑎) + 𝑀) / 2)) ⊆ (◡abs “ (0[,](((abs‘𝑎) + 𝑀) / 2)))) |
| 45 | 9, 44 | syl5eqss 3649 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐵 ⊆ (◡abs “ (0[,](((abs‘𝑎) + 𝑀) / 2)))) |
| 46 | 43 | simp3d 1075 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (◡abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ⊆ 𝑆) |
| 47 | 45, 46 | sstrd 3613 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐵 ⊆ 𝑆) |
| 48 | 42, 47 | fssresd 6071 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝐹 ↾ 𝐵):𝐵⟶ℂ) |
| 49 | | 0zd 11389 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → 0 ∈ ℤ) |
| 50 | | eqidd 2623 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) ∧ 𝑗 ∈ ℕ0) → ((𝐺‘𝑧)‘𝑗) = ((𝐺‘𝑧)‘𝑗)) |
| 51 | 7 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → 𝐴:ℕ0⟶ℂ) |
| 52 | 22 | sselda 3603 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ ℂ) |
| 53 | 6, 51, 52 | psergf 24166 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧):ℕ0⟶ℂ) |
| 54 | 53 | ffvelrnda 6359 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) ∧ 𝑗 ∈ ℕ0) → ((𝐺‘𝑧)‘𝑗) ∈ ℂ) |
| 55 | 52 | abscld 14175 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (abs‘𝑧) ∈ ℝ) |
| 56 | 55 | rexrd 10089 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (abs‘𝑧) ∈
ℝ*) |
| 57 | 19 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (((abs‘𝑎) + 𝑀) / 2) ∈
ℝ*) |
| 58 | | iccssxr 12256 |
. . . . . . . . 9
⊢
(0[,]+∞) ⊆ ℝ* |
| 59 | 6, 7, 14 | radcnvcl 24171 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
| 60 | 58, 59 | sseldi 3601 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈
ℝ*) |
| 61 | 60 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → 𝑅 ∈
ℝ*) |
| 62 | | 0cn 10032 |
. . . . . . . . . 10
⊢ 0 ∈
ℂ |
| 63 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (abs
∘ − ) = (abs ∘ − ) |
| 64 | 63 | cnmetdval 22574 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℂ ∧ 0 ∈
ℂ) → (𝑧(abs
∘ − )0) = (abs‘(𝑧 − 0))) |
| 65 | 52, 62, 64 | sylancl 694 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0))) |
| 66 | 52 | subid1d 10381 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (𝑧 − 0) = 𝑧) |
| 67 | 66 | fveq2d 6195 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (abs‘(𝑧 − 0)) = (abs‘𝑧)) |
| 68 | 65, 67 | eqtrd 2656 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (𝑧(abs ∘ − )0) = (abs‘𝑧)) |
| 69 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐵) |
| 70 | 69, 9 | syl6eleq 2711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ (0(ball‘(abs ∘ −
))(((abs‘𝑎) + 𝑀) / 2))) |
| 71 | 10 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (abs ∘ − ) ∈
(∞Met‘ℂ)) |
| 72 | | 0cnd 10033 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → 0 ∈ ℂ) |
| 73 | | elbl3 22197 |
. . . . . . . . . 10
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) ∧ (0
∈ ℂ ∧ 𝑧
∈ ℂ)) → (𝑧
∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ↔ (𝑧(abs ∘ − )0) <
(((abs‘𝑎) + 𝑀) / 2))) |
| 74 | 71, 57, 72, 52, 73 | syl22anc 1327 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (𝑧 ∈ (0(ball‘(abs ∘ −
))(((abs‘𝑎) + 𝑀) / 2)) ↔ (𝑧(abs ∘ − )0) <
(((abs‘𝑎) + 𝑀) / 2))) |
| 75 | 70, 74 | mpbid 222 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (𝑧(abs ∘ − )0) <
(((abs‘𝑎) + 𝑀) / 2)) |
| 76 | 68, 75 | eqbrtrrd 4677 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (abs‘𝑧) < (((abs‘𝑎) + 𝑀) / 2)) |
| 77 | 17 | simp3d 1075 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅) |
| 78 | 77 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅) |
| 79 | 56, 57, 61, 76, 78 | xrlttrd 11990 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (abs‘𝑧) < 𝑅) |
| 80 | 6, 51, 14, 52, 79 | radcnvlt2 24173 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → seq0( + , (𝐺‘𝑧)) ∈ dom ⇝ ) |
| 81 | 1, 49, 50, 54, 80 | isumclim2 14489 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → seq0( + , (𝐺‘𝑧)) ⇝ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑧)‘𝑗)) |
| 82 | 47 | sselda 3603 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝑆) |
| 83 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝐺‘𝑦) = (𝐺‘𝑧)) |
| 84 | 83 | fveq1d 6193 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((𝐺‘𝑦)‘𝑗) = ((𝐺‘𝑧)‘𝑗)) |
| 85 | 84 | sumeq2sdv 14435 |
. . . . . 6
⊢ (𝑦 = 𝑧 → Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗) = Σ𝑗 ∈ ℕ0 ((𝐺‘𝑧)‘𝑗)) |
| 86 | | sumex 14418 |
. . . . . 6
⊢
Σ𝑗 ∈
ℕ0 ((𝐺‘𝑧)‘𝑗) ∈ V |
| 87 | 85, 13, 86 | fvmpt 6282 |
. . . . 5
⊢ (𝑧 ∈ 𝑆 → (𝐹‘𝑧) = Σ𝑗 ∈ ℕ0 ((𝐺‘𝑧)‘𝑗)) |
| 88 | 82, 87 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (𝐹‘𝑧) = Σ𝑗 ∈ ℕ0 ((𝐺‘𝑧)‘𝑗)) |
| 89 | 81, 88 | breqtrrd 4681 |
. . 3
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → seq0( + , (𝐺‘𝑧)) ⇝ (𝐹‘𝑧)) |
| 90 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (0...𝑘) = (0...𝑚)) |
| 91 | 90 | sumeq1d 14431 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖) = Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑦)‘𝑖)) |
| 92 | 91 | mpteq2dv 4745 |
. . . . . . . . 9
⊢ (𝑘 = 𝑚 → (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)) = (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑦)‘𝑖))) |
| 93 | 34 | mptex 6486 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑦)‘𝑖)) ∈ V |
| 94 | 92, 37, 93 | fvmpt 6282 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)))‘𝑚) = (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑦)‘𝑖))) |
| 95 | 94 | adantl 482 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)))‘𝑚) = (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑦)‘𝑖))) |
| 96 | 95 | fveq1d 6193 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → (((𝑘 ∈ ℕ0
↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)))‘𝑚)‘𝑧) = ((𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑦)‘𝑖))‘𝑧)) |
| 97 | 83 | fveq1d 6193 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((𝐺‘𝑦)‘𝑖) = ((𝐺‘𝑧)‘𝑖)) |
| 98 | 97 | sumeq2sdv 14435 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑦)‘𝑖) = Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑧)‘𝑖)) |
| 99 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑦)‘𝑖)) = (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑦)‘𝑖)) |
| 100 | | sumex 14418 |
. . . . . . . 8
⊢
Σ𝑖 ∈
(0...𝑚)((𝐺‘𝑧)‘𝑖) ∈ V |
| 101 | 98, 99, 100 | fvmpt 6282 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐵 → ((𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑦)‘𝑖))‘𝑧) = Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑧)‘𝑖)) |
| 102 | 101 | ad2antlr 763 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑦)‘𝑖))‘𝑧) = Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑧)‘𝑖)) |
| 103 | | eqidd 2623 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐺‘𝑧)‘𝑖) = ((𝐺‘𝑧)‘𝑖)) |
| 104 | | simpr 477 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℕ0) |
| 105 | 104, 1 | syl6eleq 2711 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
(ℤ≥‘0)) |
| 106 | 53 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐺‘𝑧):ℕ0⟶ℂ) |
| 107 | | elfznn0 12433 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...𝑚) → 𝑖 ∈ ℕ0) |
| 108 | | ffvelrn 6357 |
. . . . . . . 8
⊢ (((𝐺‘𝑧):ℕ0⟶ℂ ∧
𝑖 ∈
ℕ0) → ((𝐺‘𝑧)‘𝑖) ∈ ℂ) |
| 109 | 106, 107,
108 | syl2an 494 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐺‘𝑧)‘𝑖) ∈ ℂ) |
| 110 | 103, 105,
109 | fsumser 14461 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) →
Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑧)‘𝑖) = (seq0( + , (𝐺‘𝑧))‘𝑚)) |
| 111 | 96, 102, 110 | 3eqtrd 2660 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → (((𝑘 ∈ ℕ0
↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)))‘𝑚)‘𝑧) = (seq0( + , (𝐺‘𝑧))‘𝑚)) |
| 112 | 111 | mpteq2dva 4744 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (𝑚 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0
↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)))‘𝑚)‘𝑧)) = (𝑚 ∈ ℕ0 ↦ (seq0( +
, (𝐺‘𝑧))‘𝑚))) |
| 113 | | 0z 11388 |
. . . . . . 7
⊢ 0 ∈
ℤ |
| 114 | | seqfn 12813 |
. . . . . . 7
⊢ (0 ∈
ℤ → seq0( + , (𝐺‘𝑧)) Fn
(ℤ≥‘0)) |
| 115 | 113, 114 | ax-mp 5 |
. . . . . 6
⊢ seq0( + ,
(𝐺‘𝑧)) Fn
(ℤ≥‘0) |
| 116 | 1 | fneq2i 5986 |
. . . . . 6
⊢ (seq0( +
, (𝐺‘𝑧)) Fn ℕ0 ↔
seq0( + , (𝐺‘𝑧)) Fn
(ℤ≥‘0)) |
| 117 | 115, 116 | mpbir 221 |
. . . . 5
⊢ seq0( + ,
(𝐺‘𝑧)) Fn ℕ0 |
| 118 | | dffn5 6241 |
. . . . 5
⊢ (seq0( +
, (𝐺‘𝑧)) Fn ℕ0 ↔
seq0( + , (𝐺‘𝑧)) = (𝑚 ∈ ℕ0 ↦ (seq0( +
, (𝐺‘𝑧))‘𝑚))) |
| 119 | 117, 118 | mpbi 220 |
. . . 4
⊢ seq0( + ,
(𝐺‘𝑧)) = (𝑚 ∈ ℕ0 ↦ (seq0( +
, (𝐺‘𝑧))‘𝑚)) |
| 120 | 112, 119 | syl6eqr 2674 |
. . 3
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (𝑚 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0
↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)))‘𝑚)‘𝑧)) = seq0( + , (𝐺‘𝑧))) |
| 121 | | fvres 6207 |
. . . 4
⊢ (𝑧 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑧) = (𝐹‘𝑧)) |
| 122 | 121 | adantl 482 |
. . 3
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → ((𝐹 ↾ 𝐵)‘𝑧) = (𝐹‘𝑧)) |
| 123 | 89, 120, 122 | 3brtr4d 4685 |
. 2
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝐵) → (𝑚 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0
↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)))‘𝑚)‘𝑧)) ⇝ ((𝐹 ↾ 𝐵)‘𝑧)) |
| 124 | 94 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)))‘𝑚) = (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑦)‘𝑖))) |
| 125 | 124 | oveq2d 6666 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (ℂ
D ((𝑘 ∈
ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)))‘𝑚)) = (ℂ D (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑦)‘𝑖)))) |
| 126 | | eqid 2622 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 127 | 126 | cnfldtop 22587 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) ∈ Top |
| 128 | 126 | cnfldtopon 22586 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 129 | 128 | toponunii 20721 |
. . . . . . . . 9
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
| 130 | 129 | restid 16094 |
. . . . . . . 8
⊢
((TopOpen‘ℂfld) ∈ Top →
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld)) |
| 131 | 127, 130 | ax-mp 5 |
. . . . . . 7
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld) |
| 132 | 131 | eqcomi 2631 |
. . . . . 6
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
| 133 | 2 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → ℂ
∈ {ℝ, ℂ}) |
| 134 | 126 | cnfldtopn 22585 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) = (MetOpen‘(abs ∘
− )) |
| 135 | 134 | blopn 22305 |
. . . . . . . . 9
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ (((abs‘𝑎) +
𝑀) / 2) ∈
ℝ*) → (0(ball‘(abs ∘ −
))(((abs‘𝑎) + 𝑀) / 2)) ∈
(TopOpen‘ℂfld)) |
| 136 | 11, 12, 19, 135 | syl3anc 1326 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(ball‘(abs ∘ −
))(((abs‘𝑎) + 𝑀) / 2)) ∈
(TopOpen‘ℂfld)) |
| 137 | 9, 136 | syl5eqel 2705 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐵 ∈
(TopOpen‘ℂfld)) |
| 138 | 137 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → 𝐵 ∈
(TopOpen‘ℂfld)) |
| 139 | | fzfid 12772 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) →
(0...𝑚) ∈
Fin) |
| 140 | 7 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ) |
| 141 | 140 | 3ad2ant1 1082 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦 ∈ 𝐵) → 𝐴:ℕ0⟶ℂ) |
| 142 | 22 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → 𝐵 ⊆
ℂ) |
| 143 | 142 | sselda 3603 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ℂ) |
| 144 | 143 | 3adant2 1080 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ℂ) |
| 145 | 6, 141, 144 | psergf 24166 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦 ∈ 𝐵) → (𝐺‘𝑦):ℕ0⟶ℂ) |
| 146 | 107 | 3ad2ant2 1083 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦 ∈ 𝐵) → 𝑖 ∈ ℕ0) |
| 147 | 145, 146 | ffvelrnd 6360 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦 ∈ 𝐵) → ((𝐺‘𝑦)‘𝑖) ∈ ℂ) |
| 148 | 2 | a1i 11 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → ℂ ∈ {ℝ,
ℂ}) |
| 149 | | ffvelrn 6357 |
. . . . . . . . . . 11
⊢ ((𝐴:ℕ0⟶ℂ ∧
𝑖 ∈
ℕ0) → (𝐴‘𝑖) ∈ ℂ) |
| 150 | 140, 107,
149 | syl2an 494 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (𝐴‘𝑖) ∈ ℂ) |
| 151 | 150 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ 𝐵) → (𝐴‘𝑖) ∈ ℂ) |
| 152 | 143 | adantlr 751 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ℂ) |
| 153 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℂ → 𝑦 ∈
ℂ) |
| 154 | 107 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → 𝑖 ∈ ℕ0) |
| 155 | | expcl 12878 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0)
→ (𝑦↑𝑖) ∈
ℂ) |
| 156 | 153, 154,
155 | syl2anr 495 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ ℂ) → (𝑦↑𝑖) ∈ ℂ) |
| 157 | 152, 156 | syldan 487 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ 𝐵) → (𝑦↑𝑖) ∈ ℂ) |
| 158 | 151, 157 | mulcld 10060 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ 𝐵) → ((𝐴‘𝑖) · (𝑦↑𝑖)) ∈ ℂ) |
| 159 | | ovexd 6680 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ 𝐵) → ((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ V) |
| 160 | | c0ex 10034 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
| 161 | | ovex 6678 |
. . . . . . . . . . 11
⊢ (𝑖 · (𝑦↑(𝑖 − 1))) ∈ V |
| 162 | 160, 161 | ifex 4156 |
. . . . . . . . . 10
⊢ if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ V |
| 163 | 162 | a1i 11 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ 𝐵) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ V) |
| 164 | 162 | a1i 11 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ ℂ) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ V) |
| 165 | | dvexp2 23717 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ0
→ (ℂ D (𝑦 ∈
ℂ ↦ (𝑦↑𝑖))) = (𝑦 ∈ ℂ ↦ if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) |
| 166 | 154, 165 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑𝑖))) = (𝑦 ∈ ℂ ↦ if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) |
| 167 | 22 | ad2antrr 762 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → 𝐵 ⊆ ℂ) |
| 168 | 137 | ad2antrr 762 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → 𝐵 ∈
(TopOpen‘ℂfld)) |
| 169 | 148, 156,
164, 166, 167, 132, 126, 168 | dvmptres 23726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦 ∈ 𝐵 ↦ (𝑦↑𝑖))) = (𝑦 ∈ 𝐵 ↦ if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) |
| 170 | 148, 157,
163, 169, 150 | dvmptcmul 23727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦 ∈ 𝐵 ↦ ((𝐴‘𝑖) · (𝑦↑𝑖)))) = (𝑦 ∈ 𝐵 ↦ ((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) |
| 171 | 148, 158,
159, 170 | dvmptcl 23722 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ 𝐵) → ((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈
ℂ) |
| 172 | 171 | 3impa 1259 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦 ∈ 𝐵) → ((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈
ℂ) |
| 173 | 107 | ad2antlr 763 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ 𝐵) → 𝑖 ∈ ℕ0) |
| 174 | 6 | pserval2 24165 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0)
→ ((𝐺‘𝑦)‘𝑖) = ((𝐴‘𝑖) · (𝑦↑𝑖))) |
| 175 | 152, 173,
174 | syl2anc 693 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ 𝐵) → ((𝐺‘𝑦)‘𝑖) = ((𝐴‘𝑖) · (𝑦↑𝑖))) |
| 176 | 175 | mpteq2dva 4744 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (𝑦 ∈ 𝐵 ↦ ((𝐺‘𝑦)‘𝑖)) = (𝑦 ∈ 𝐵 ↦ ((𝐴‘𝑖) · (𝑦↑𝑖)))) |
| 177 | 176 | oveq2d 6666 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦 ∈ 𝐵 ↦ ((𝐺‘𝑦)‘𝑖))) = (ℂ D (𝑦 ∈ 𝐵 ↦ ((𝐴‘𝑖) · (𝑦↑𝑖))))) |
| 178 | 177, 170 | eqtrd 2656 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦 ∈ 𝐵 ↦ ((𝐺‘𝑦)‘𝑖))) = (𝑦 ∈ 𝐵 ↦ ((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) |
| 179 | 132, 126,
133, 138, 139, 147, 172, 178 | dvmptfsum 23738 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (ℂ
D (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺‘𝑦)‘𝑖))) = (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) |
| 180 | 125, 179 | eqtrd 2656 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (ℂ
D ((𝑘 ∈
ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)))‘𝑚)) = (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) |
| 181 | 180 | mpteq2dva 4744 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑚 ∈ ℕ0 ↦ (ℂ
D ((𝑘 ∈
ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)))‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))) |
| 182 | | nnssnn0 11295 |
. . . . . 6
⊢ ℕ
⊆ ℕ0 |
| 183 | | resmpt 5449 |
. . . . . 6
⊢ (ℕ
⊆ ℕ0 → ((𝑚 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))) |
| 184 | 182, 183 | ax-mp 5 |
. . . . 5
⊢ ((𝑚 ∈ ℕ0
↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) |
| 185 | | oveq1 6657 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → (𝑎↑𝑖) = (𝑥↑𝑖)) |
| 186 | 185 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥↑𝑖))) |
| 187 | 186 | mpteq2dv 4745 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥↑𝑖)))) |
| 188 | | oveq1 6657 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑛 → (𝑖 + 1) = (𝑛 + 1)) |
| 189 | 188 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑛 → (𝐴‘(𝑖 + 1)) = (𝐴‘(𝑛 + 1))) |
| 190 | 188, 189 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑛 → ((𝑖 + 1) · (𝐴‘(𝑖 + 1))) = ((𝑛 + 1) · (𝐴‘(𝑛 + 1)))) |
| 191 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑛 → (𝑥↑𝑖) = (𝑥↑𝑛)) |
| 192 | 190, 191 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑛 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥↑𝑖)) = (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥↑𝑛))) |
| 193 | 192 | cbvmptv 4750 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑥↑𝑖))) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥↑𝑛))) |
| 194 | | oveq1 6657 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1)) |
| 195 | 194 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → (𝐴‘(𝑚 + 1)) = (𝐴‘(𝑛 + 1))) |
| 196 | 194, 195 | oveq12d 6668 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑛 → ((𝑚 + 1) · (𝐴‘(𝑚 + 1))) = ((𝑛 + 1) · (𝐴‘(𝑛 + 1)))) |
| 197 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
↦ ((𝑚 + 1) ·
(𝐴‘(𝑚 + 1)))) = (𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1)))) |
| 198 | | ovex 6678 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 + 1) · (𝐴‘(𝑛 + 1))) ∈ V |
| 199 | 196, 197,
198 | fvmpt 6282 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0
→ ((𝑚 ∈
ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) = ((𝑛 + 1) · (𝐴‘(𝑛 + 1)))) |
| 200 | 199 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ (((𝑚 ∈
ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥↑𝑛)) = (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥↑𝑛))) |
| 201 | 200 | mpteq2ia 4740 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
↦ (((𝑚 ∈
ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥↑𝑛))) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥↑𝑛))) |
| 202 | 193, 201 | eqtr4i 2647 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑥↑𝑖))) = (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0
↦ ((𝑚 + 1) ·
(𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥↑𝑛))) |
| 203 | 187, 202 | syl6eq 2672 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))) = (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0
↦ ((𝑚 + 1) ·
(𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥↑𝑛)))) |
| 204 | 203 | cbvmptv 4750 |
. . . . . . . 8
⊢ (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖)))) = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0
↦ ((𝑚 + 1) ·
(𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥↑𝑛)))) |
| 205 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦) = ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑧)) |
| 206 | 205 | fveq1d 6193 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦)‘𝑘) = (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑧)‘𝑘)) |
| 207 | 206 | sumeq2sdv 14435 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑧)‘𝑘)) |
| 208 | 207 | cbvmptv 4750 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦)‘𝑘)) = (𝑧 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑧)‘𝑘)) |
| 209 | | peano2nn0 11333 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ0) |
| 210 | 209 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) ∈
ℕ0) |
| 211 | 210 | nn0cnd 11353 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) ∈
ℂ) |
| 212 | 140, 210 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (𝐴‘(𝑚 + 1)) ∈ ℂ) |
| 213 | 211, 212 | mulcld 10060 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · (𝐴‘(𝑚 + 1))) ∈ ℂ) |
| 214 | 213, 197 | fmptd 6385 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 +
1)))):ℕ0⟶ℂ) |
| 215 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑗 → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑟) = ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑗)) |
| 216 | 215 | seqeq3d 12809 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑗 → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑟)) = seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑗))) |
| 217 | 216 | eleq1d 2686 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑗 → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑟)) ∈ dom ⇝ ↔ seq0( + ,
((𝑎 ∈ ℂ ↦
(𝑖 ∈
ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑗)) ∈ dom ⇝ )) |
| 218 | 217 | cbvrabv 3199 |
. . . . . . . . 9
⊢ {𝑟 ∈ ℝ ∣ seq0( +
, ((𝑎 ∈ ℂ
↦ (𝑖 ∈
ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑟)) ∈ dom ⇝ } = {𝑗 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑗)) ∈ dom ⇝ } |
| 219 | 218 | supeq1i 8353 |
. . . . . . . 8
⊢
sup({𝑟 ∈
ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) = sup({𝑗 ∈
ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑗)) ∈ dom ⇝ }, ℝ*,
< ) |
| 220 | 205 | seqeq3d 12809 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦)) = seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑧))) |
| 221 | 220 | fveq1d 6193 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑧))‘𝑗)) |
| 222 | 221 | cbvmptv 4750 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗)) = (𝑧 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑧))‘𝑗)) |
| 223 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑚 → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑧))‘𝑗) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑧))‘𝑚)) |
| 224 | 223 | mpteq2dv 4745 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑚 → (𝑧 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑧))‘𝑗)) = (𝑧 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑧))‘𝑚))) |
| 225 | 222, 224 | syl5eq 2668 |
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗)) = (𝑧 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑧))‘𝑚))) |
| 226 | 225 | cbvmptv 4750 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ0
↦ (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑧))‘𝑚))) |
| 227 | 18 | rpred 11872 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ) |
| 228 | 6, 13, 7, 14, 15, 16 | psercnlem1 24179 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧
(abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) |
| 229 | 228 | simp1d 1073 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈
ℝ+) |
| 230 | 229 | rpxrd 11873 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈
ℝ*) |
| 231 | 204, 214,
219 | radcnvcl 24171 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) ∈ (0[,]+∞)) |
| 232 | 58, 231 | sseldi 3601 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ*) |
| 233 | 228 | simp2d 1074 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < 𝑀) |
| 234 | | cnvimass 5485 |
. . . . . . . . . . . . . . . 16
⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs |
| 235 | | absf 14077 |
. . . . . . . . . . . . . . . . 17
⊢
abs:ℂ⟶ℝ |
| 236 | 235 | fdmi 6052 |
. . . . . . . . . . . . . . . 16
⊢ dom abs =
ℂ |
| 237 | 234, 236 | sseqtri 3637 |
. . . . . . . . . . . . . . 15
⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
| 238 | 15, 237 | eqsstri 3635 |
. . . . . . . . . . . . . 14
⊢ 𝑆 ⊆
ℂ |
| 239 | 238 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 240 | 239 | sselda 3603 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ ℂ) |
| 241 | 240 | abscld 14175 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ ℝ) |
| 242 | 229 | rpred 11872 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ) |
| 243 | | avglt2 11271 |
. . . . . . . . . . 11
⊢
(((abs‘𝑎)
∈ ℝ ∧ 𝑀
∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀)) |
| 244 | 241, 242,
243 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀)) |
| 245 | 233, 244 | mpbid 222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑀) |
| 246 | 229 | rpge0d 11876 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ≤ 𝑀) |
| 247 | 242, 246 | absidd 14161 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑀) = 𝑀) |
| 248 | 229 | rpcnd 11874 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℂ) |
| 249 | | oveq1 6657 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑀 → (𝑤↑𝑖) = (𝑀↑𝑖)) |
| 250 | 249 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑀 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤↑𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀↑𝑖))) |
| 251 | 250 | mpteq2dv 4745 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑀 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤↑𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀↑𝑖)))) |
| 252 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑤 → (𝑎↑𝑖) = (𝑤↑𝑖)) |
| 253 | 252 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑤 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤↑𝑖))) |
| 254 | 253 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑤 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤↑𝑖)))) |
| 255 | 254 | cbvmptv 4750 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖)))) = (𝑤 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤↑𝑖)))) |
| 256 | | nn0ex 11298 |
. . . . . . . . . . . . . . . 16
⊢
ℕ0 ∈ V |
| 257 | 256 | mptex 6486 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑀↑𝑖))) ∈ V |
| 258 | 251, 255,
257 | fvmpt 6282 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℂ → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑀) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀↑𝑖)))) |
| 259 | 248, 258 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑀) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀↑𝑖)))) |
| 260 | 259 | seqeq3d 12809 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑀)) = seq0( + , (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀↑𝑖))))) |
| 261 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑖 → (𝐴‘𝑛) = (𝐴‘𝑖)) |
| 262 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑖 → (𝑥↑𝑛) = (𝑥↑𝑖)) |
| 263 | 261, 262 | oveq12d 6668 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑖 → ((𝐴‘𝑛) · (𝑥↑𝑛)) = ((𝐴‘𝑖) · (𝑥↑𝑖))) |
| 264 | 263 | cbvmptv 4750 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑥↑𝑛))) = (𝑖 ∈ ℕ0 ↦ ((𝐴‘𝑖) · (𝑥↑𝑖))) |
| 265 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (𝑥↑𝑖) = (𝑦↑𝑖)) |
| 266 | 265 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ((𝐴‘𝑖) · (𝑥↑𝑖)) = ((𝐴‘𝑖) · (𝑦↑𝑖))) |
| 267 | 266 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (𝑖 ∈ ℕ0 ↦ ((𝐴‘𝑖) · (𝑥↑𝑖))) = (𝑖 ∈ ℕ0 ↦ ((𝐴‘𝑖) · (𝑦↑𝑖)))) |
| 268 | 264, 267 | syl5eq 2668 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛))) = (𝑖 ∈ ℕ0 ↦ ((𝐴‘𝑖) · (𝑦↑𝑖)))) |
| 269 | 268 | cbvmptv 4750 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) = (𝑦 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ ((𝐴‘𝑖) · (𝑦↑𝑖)))) |
| 270 | 6, 269 | eqtri 2644 |
. . . . . . . . . . . . 13
⊢ 𝐺 = (𝑦 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ ((𝐴‘𝑖) · (𝑦↑𝑖)))) |
| 271 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = 𝑠 → (𝐺‘𝑟) = (𝐺‘𝑠)) |
| 272 | 271 | seqeq3d 12809 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 𝑠 → seq0( + , (𝐺‘𝑟)) = seq0( + , (𝐺‘𝑠))) |
| 273 | 272 | eleq1d 2686 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑠 → (seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ )) |
| 274 | 273 | cbvrabv 3199 |
. . . . . . . . . . . . . . 15
⊢ {𝑟 ∈ ℝ ∣ seq0( +
, (𝐺‘𝑟)) ∈ dom ⇝ } = {𝑠 ∈ ℝ ∣ seq0( +
, (𝐺‘𝑠)) ∈ dom ⇝
} |
| 275 | 274 | supeq1i 8353 |
. . . . . . . . . . . . . 14
⊢
sup({𝑟 ∈
ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) = sup({𝑠 ∈
ℝ ∣ seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ }, ℝ*,
< ) |
| 276 | 14, 275 | eqtri 2644 |
. . . . . . . . . . . . 13
⊢ 𝑅 = sup({𝑠 ∈ ℝ ∣ seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ }, ℝ*,
< ) |
| 277 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑀↑𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀↑𝑖))) |
| 278 | 7 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐴:ℕ0⟶ℂ) |
| 279 | 228 | simp3d 1075 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 < 𝑅) |
| 280 | 247, 279 | eqbrtrd 4675 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑀) < 𝑅) |
| 281 | 270, 276,
277, 278, 248, 280 | dvradcnv 24175 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → seq0( + , (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀↑𝑖)))) ∈ dom ⇝ ) |
| 282 | 260, 281 | eqeltrd 2701 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑀)) ∈ dom ⇝ ) |
| 283 | 204, 214,
219, 248, 282 | radcnvle 24174 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑀) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< )) |
| 284 | 247, 283 | eqbrtrrd 4677 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< )) |
| 285 | 19, 230, 232, 245, 284 | xrltletrd 11992 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*,
< )) |
| 286 | 204, 208,
214, 219, 226, 227, 285, 45 | pserulm 24176 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑗 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗)))(⇝𝑢‘𝐵)(𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦)‘𝑘))) |
| 287 | 22 | sselda 3603 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ℂ) |
| 288 | | oveq1 6657 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑦 → (𝑎↑𝑖) = (𝑦↑𝑖)) |
| 289 | 288 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑦 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦↑𝑖))) |
| 290 | 289 | mpteq2dv 4745 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑦 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦↑𝑖)))) |
| 291 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖)))) = (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖)))) |
| 292 | 256 | mptex 6486 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑦↑𝑖))) ∈ V |
| 293 | 290, 291,
292 | fvmpt 6282 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℂ → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦↑𝑖)))) |
| 294 | 287, 293 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦↑𝑖)))) |
| 295 | 294 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦↑𝑖)))) |
| 296 | 295 | fveq1d 6193 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦↑𝑖)))‘𝑘)) |
| 297 | | oveq1 6657 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑘 → (𝑖 + 1) = (𝑘 + 1)) |
| 298 | 297 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑘 → (𝐴‘(𝑖 + 1)) = (𝐴‘(𝑘 + 1))) |
| 299 | 297, 298 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑘 → ((𝑖 + 1) · (𝐴‘(𝑖 + 1))) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1)))) |
| 300 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑘 → (𝑦↑𝑖) = (𝑦↑𝑘)) |
| 301 | 299, 300 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦↑𝑖)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) |
| 302 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑦↑𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦↑𝑖))) |
| 303 | | ovex 6678 |
. . . . . . . . . . . 12
⊢ (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)) ∈ V |
| 304 | 301, 302,
303 | fvmpt 6282 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ ((𝑖 ∈
ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦↑𝑖)))‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) |
| 305 | 304 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑦↑𝑖)))‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) |
| 306 | 296, 305 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦)‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) |
| 307 | 306 | sumeq2dv 14433 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) → Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) |
| 308 | 307 | mpteq2dva 4744 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦)‘𝑘)) = (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) |
| 309 | 286, 308 | breqtrd 4679 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑗 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗)))(⇝𝑢‘𝐵)(𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) |
| 310 | | nnuz 11723 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
| 311 | | 1e0p1 11552 |
. . . . . . . . 9
⊢ 1 = (0 +
1) |
| 312 | 311 | fveq2i 6194 |
. . . . . . . 8
⊢
(ℤ≥‘1) = (ℤ≥‘(0 +
1)) |
| 313 | 310, 312 | eqtri 2644 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘(0 + 1)) |
| 314 | | 1zzd 11408 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 1 ∈ ℤ) |
| 315 | | 0zd 11389 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) → 0 ∈ ℤ) |
| 316 | | peano2nn0 11333 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ ℕ0
→ (𝑖 + 1) ∈
ℕ0) |
| 317 | 316 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ ℕ0
→ (𝑖 + 1) ∈
ℂ) |
| 318 | 317 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ ℕ0) → (𝑖 + 1) ∈
ℂ) |
| 319 | 7 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) → 𝐴:ℕ0⟶ℂ) |
| 320 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴:ℕ0⟶ℂ ∧
(𝑖 + 1) ∈
ℕ0) → (𝐴‘(𝑖 + 1)) ∈ ℂ) |
| 321 | 319, 316,
320 | syl2an 494 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ ℕ0) → (𝐴‘(𝑖 + 1)) ∈ ℂ) |
| 322 | 318, 321 | mulcld 10060 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ ℕ0) → ((𝑖 + 1) · (𝐴‘(𝑖 + 1))) ∈ ℂ) |
| 323 | 287, 155 | sylan 488 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ ℕ0) → (𝑦↑𝑖) ∈ ℂ) |
| 324 | 322, 323 | mulcld 10060 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ ℕ0) → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦↑𝑖)) ∈ ℂ) |
| 325 | 324, 302 | fmptd 6385 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦↑𝑖))):ℕ0⟶ℂ) |
| 326 | 294 | feq1d 6030 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦):ℕ0⟶ℂ ↔
(𝑖 ∈
ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦↑𝑖))):ℕ0⟶ℂ)) |
| 327 | 325, 326 | mpbird 247 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦):ℕ0⟶ℂ) |
| 328 | 327 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦)‘𝑚) ∈ ℂ) |
| 329 | 1, 315, 328 | serf 12829 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦)):ℕ0⟶ℂ) |
| 330 | 329 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑦 ∈ 𝐵) ∧ 𝑗 ∈ ℕ0) → (seq0( +
, ((𝑎 ∈ ℂ
↦ (𝑖 ∈
ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗) ∈ ℂ) |
| 331 | 330 | an32s 846 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑦 ∈ 𝐵) → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗) ∈ ℂ) |
| 332 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗)) = (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗)) |
| 333 | 331, 332 | fmptd 6385 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) → (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗)):𝐵⟶ℂ) |
| 334 | 32, 34 | elmap 7886 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗)) ∈ (ℂ ↑𝑚
𝐵) ↔ (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗)):𝐵⟶ℂ) |
| 335 | 333, 334 | sylibr 224 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) → (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗)) ∈ (ℂ ↑𝑚
𝐵)) |
| 336 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ0
↦ (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗))) = (𝑗 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗))) |
| 337 | 335, 336 | fmptd 6385 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑗 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗))):ℕ0⟶(ℂ
↑𝑚 𝐵)) |
| 338 | | elfznn 12370 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℕ) |
| 339 | 338 | nnne0d 11065 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...𝑚) → 𝑖 ≠ 0) |
| 340 | 339 | neneqd 2799 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑚) → ¬ 𝑖 = 0) |
| 341 | 340 | iffalsed 4097 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑚) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) = (𝑖 · (𝑦↑(𝑖 − 1)))) |
| 342 | 341 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1...𝑚) → ((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = ((𝐴‘𝑖) · (𝑖 · (𝑦↑(𝑖 − 1))))) |
| 343 | 342 | sumeq2i 14429 |
. . . . . . . . . . . 12
⊢
Σ𝑖 ∈
(1...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = Σ𝑖 ∈ (1...𝑚)((𝐴‘𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))) |
| 344 | | 1zzd 11408 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → 1 ∈ ℤ) |
| 345 | | nnz 11399 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℤ) |
| 346 | 345 | ad2antlr 763 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → 𝑚 ∈ ℤ) |
| 347 | 278 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → 𝐴:ℕ0⟶ℂ) |
| 348 | 338 | nnnn0d 11351 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℕ0) |
| 349 | 347, 348,
149 | syl2an 494 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑚)) → (𝐴‘𝑖) ∈ ℂ) |
| 350 | 338 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℕ) |
| 351 | 350 | nncnd 11036 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℂ) |
| 352 | 287 | adantlr 751 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ℂ) |
| 353 | | nnm1nn0 11334 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ℕ → (𝑖 − 1) ∈
ℕ0) |
| 354 | 338, 353 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...𝑚) → (𝑖 − 1) ∈
ℕ0) |
| 355 | | expcl 12878 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℂ ∧ (𝑖 − 1) ∈
ℕ0) → (𝑦↑(𝑖 − 1)) ∈ ℂ) |
| 356 | 352, 354,
355 | syl2an 494 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑚)) → (𝑦↑(𝑖 − 1)) ∈ ℂ) |
| 357 | 351, 356 | mulcld 10060 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑚)) → (𝑖 · (𝑦↑(𝑖 − 1))) ∈
ℂ) |
| 358 | 349, 357 | mulcld 10060 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑚)) → ((𝐴‘𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))) ∈
ℂ) |
| 359 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = (𝑘 + 1) → (𝐴‘𝑖) = (𝐴‘(𝑘 + 1))) |
| 360 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = (𝑘 + 1) → 𝑖 = (𝑘 + 1)) |
| 361 | | oveq1 6657 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑘 + 1) → (𝑖 − 1) = ((𝑘 + 1) − 1)) |
| 362 | 361 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = (𝑘 + 1) → (𝑦↑(𝑖 − 1)) = (𝑦↑((𝑘 + 1) − 1))) |
| 363 | 360, 362 | oveq12d 6668 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = (𝑘 + 1) → (𝑖 · (𝑦↑(𝑖 − 1))) = ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) |
| 364 | 359, 363 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑘 + 1) → ((𝐴‘𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))) = ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))))) |
| 365 | 344, 344,
346, 358, 364 | fsumshftm 14513 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → Σ𝑖 ∈ (1...𝑚)((𝐴‘𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))) = Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))))) |
| 366 | 343, 365 | syl5eq 2668 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → Σ𝑖 ∈ (1...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))))) |
| 367 | 311 | oveq1i 6660 |
. . . . . . . . . . . . . 14
⊢
(1...𝑚) = ((0 +
1)...𝑚) |
| 368 | | fzp1ss 12392 |
. . . . . . . . . . . . . . 15
⊢ (0 ∈
ℤ → ((0 + 1)...𝑚) ⊆ (0...𝑚)) |
| 369 | 113, 368 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((0 +
1)...𝑚) ⊆ (0...𝑚) |
| 370 | 367, 369 | eqsstri 3635 |
. . . . . . . . . . . . 13
⊢
(1...𝑚) ⊆
(0...𝑚) |
| 371 | 370 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → (1...𝑚) ⊆ (0...𝑚)) |
| 372 | 342 | adantl 482 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑚)) → ((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = ((𝐴‘𝑖) · (𝑖 · (𝑦↑(𝑖 − 1))))) |
| 373 | 372, 358 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑚)) → ((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈
ℂ) |
| 374 | | eldif 3584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ ((0...𝑚) ∖ ((0 + 1)...𝑚)) ↔ (𝑖 ∈ (0...𝑚) ∧ ¬ 𝑖 ∈ ((0 + 1)...𝑚))) |
| 375 | | elfzuz2 12346 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0...𝑚) → 𝑚 ∈
(ℤ≥‘0)) |
| 376 | | elfzp12 12419 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈
(ℤ≥‘0) → (𝑖 ∈ (0...𝑚) ↔ (𝑖 = 0 ∨ 𝑖 ∈ ((0 + 1)...𝑚)))) |
| 377 | 375, 376 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0...𝑚) → (𝑖 ∈ (0...𝑚) ↔ (𝑖 = 0 ∨ 𝑖 ∈ ((0 + 1)...𝑚)))) |
| 378 | 377 | ibi 256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0...𝑚) → (𝑖 = 0 ∨ 𝑖 ∈ ((0 + 1)...𝑚))) |
| 379 | 378 | ord 392 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0...𝑚) → (¬ 𝑖 = 0 → 𝑖 ∈ ((0 + 1)...𝑚))) |
| 380 | 379 | con1d 139 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0...𝑚) → (¬ 𝑖 ∈ ((0 + 1)...𝑚) → 𝑖 = 0)) |
| 381 | 380 | imp 445 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0...𝑚) ∧ ¬ 𝑖 ∈ ((0 + 1)...𝑚)) → 𝑖 = 0) |
| 382 | 374, 381 | sylbi 207 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ((0...𝑚) ∖ ((0 + 1)...𝑚)) → 𝑖 = 0) |
| 383 | 367 | difeq2i 3725 |
. . . . . . . . . . . . . . . . 17
⊢
((0...𝑚) ∖
(1...𝑚)) = ((0...𝑚) ∖ ((0 + 1)...𝑚)) |
| 384 | 382, 383 | eleq2s 2719 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ((0...𝑚) ∖ (1...𝑚)) → 𝑖 = 0) |
| 385 | 384 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → 𝑖 = 0) |
| 386 | 385 | iftrued 4094 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) = 0) |
| 387 | 386 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → ((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = ((𝐴‘𝑖) · 0)) |
| 388 | | eldifi 3732 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ((0...𝑚) ∖ (1...𝑚)) → 𝑖 ∈ (0...𝑚)) |
| 389 | 388, 107 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ((0...𝑚) ∖ (1...𝑚)) → 𝑖 ∈ ℕ0) |
| 390 | 347, 389,
149 | syl2an 494 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → (𝐴‘𝑖) ∈ ℂ) |
| 391 | 390 | mul01d 10235 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → ((𝐴‘𝑖) · 0) = 0) |
| 392 | 387, 391 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → ((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = 0) |
| 393 | | fzfid 12772 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → (0...𝑚) ∈ Fin) |
| 394 | 371, 373,
392, 393 | fsumss 14456 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → Σ𝑖 ∈ (1...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) |
| 395 | | 1m1e0 11089 |
. . . . . . . . . . . . . 14
⊢ (1
− 1) = 0 |
| 396 | 395 | oveq1i 6660 |
. . . . . . . . . . . . 13
⊢ ((1
− 1)...(𝑚 − 1))
= (0...(𝑚 −
1)) |
| 397 | 396 | sumeq1i 14428 |
. . . . . . . . . . . 12
⊢
Σ𝑘 ∈ ((1
− 1)...(𝑚 −
1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = Σ𝑘 ∈ (0...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) |
| 398 | | elfznn0 12433 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...(𝑚 − 1)) → 𝑘 ∈ ℕ0) |
| 399 | 398 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝑘 ∈ ℕ0) |
| 400 | 399, 304 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦↑𝑖)))‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) |
| 401 | 352 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝑦 ∈ ℂ) |
| 402 | 401, 293 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦↑𝑖)))) |
| 403 | 402 | fveq1d 6193 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦↑𝑖)))‘𝑘)) |
| 404 | 347 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝐴:ℕ0⟶ℂ) |
| 405 | | peano2nn0 11333 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ0) |
| 406 | 399, 405 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑘 + 1) ∈
ℕ0) |
| 407 | 404, 406 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝐴‘(𝑘 + 1)) ∈ ℂ) |
| 408 | 406 | nn0cnd 11353 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑘 + 1) ∈ ℂ) |
| 409 | | expcl 12878 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑦↑𝑘) ∈
ℂ) |
| 410 | 352, 398,
409 | syl2an 494 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑦↑𝑘) ∈ ℂ) |
| 411 | 407, 408,
410 | mul12d 10245 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑𝑘))) = ((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑦↑𝑘)))) |
| 412 | 399 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝑘 ∈ ℂ) |
| 413 | | ax-1cn 9994 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℂ |
| 414 | | pncan 10287 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑘 + 1)
− 1) = 𝑘) |
| 415 | 412, 413,
414 | sylancl 694 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑘 + 1) − 1) = 𝑘) |
| 416 | 415 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑦↑((𝑘 + 1) − 1)) = (𝑦↑𝑘)) |
| 417 | 416 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))) = ((𝑘 + 1) · (𝑦↑𝑘))) |
| 418 | 417 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑𝑘)))) |
| 419 | 408, 407,
410 | mulassd 10063 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)) = ((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑦↑𝑘)))) |
| 420 | 411, 418,
419 | 3eqtr4d 2666 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) |
| 421 | 400, 403,
420 | 3eqtr4d 2666 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦)‘𝑘) = ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))))) |
| 422 | | nnm1nn0 11334 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ → (𝑚 − 1) ∈
ℕ0) |
| 423 | 422 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) → (𝑚 − 1) ∈
ℕ0) |
| 424 | 423 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → (𝑚 − 1) ∈
ℕ0) |
| 425 | 424, 1 | syl6eleq 2711 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → (𝑚 − 1) ∈
(ℤ≥‘0)) |
| 426 | 416, 410 | eqeltrd 2701 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑦↑((𝑘 + 1) − 1)) ∈
ℂ) |
| 427 | 408, 426 | mulcld 10060 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))) ∈
ℂ) |
| 428 | 407, 427 | mulcld 10060 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) ∈
ℂ) |
| 429 | 421, 425,
428 | fsumser 14461 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → Σ𝑘 ∈ (0...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘(𝑚 − 1))) |
| 430 | 397, 429 | syl5eq 2668 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘(𝑚 − 1))) |
| 431 | 366, 394,
430 | 3eqtr3d 2664 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘(𝑚 − 1))) |
| 432 | 431 | mpteq2dva 4744 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) → (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) = (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘(𝑚 − 1)))) |
| 433 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑚 − 1) → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0
↦ (((𝑖 + 1) ·
(𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘(𝑚 − 1))) |
| 434 | 433 | mpteq2dv 4745 |
. . . . . . . . . . 11
⊢ (𝑗 = (𝑚 − 1) → (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗)) = (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘(𝑚 − 1)))) |
| 435 | 34 | mptex 6486 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘(𝑚 − 1))) ∈ V |
| 436 | 434, 336,
435 | fvmpt 6282 |
. . . . . . . . . 10
⊢ ((𝑚 − 1) ∈
ℕ0 → ((𝑗 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1)) = (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘(𝑚 − 1)))) |
| 437 | 423, 436 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) → ((𝑗 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1)) = (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘(𝑚 − 1)))) |
| 438 | 432, 437 | eqtr4d 2659 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ) → (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) = ((𝑗 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1))) |
| 439 | 438 | mpteq2dva 4744 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑚 ∈ ℕ ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) = (𝑚 ∈ ℕ ↦ ((𝑗 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1)))) |
| 440 | 1, 313, 4, 314, 337, 439 | ulmshft 24144 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((𝑗 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎↑𝑖))))‘𝑦))‘𝑗)))(⇝𝑢‘𝐵)(𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) ↔ (𝑚 ∈ ℕ ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 −
1)))))))(⇝𝑢‘𝐵)(𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))))) |
| 441 | 309, 440 | mpbid 222 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑚 ∈ ℕ ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 −
1)))))))(⇝𝑢‘𝐵)(𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) |
| 442 | 184, 441 | syl5eqbr 4688 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((𝑚 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾
ℕ)(⇝𝑢‘𝐵)(𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) |
| 443 | | 1nn0 11308 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
| 444 | 443 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 1 ∈
ℕ0) |
| 445 | | fzfid 12772 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦 ∈ 𝐵) → (0...𝑚) ∈ Fin) |
| 446 | 171 | an32s 846 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦 ∈ 𝐵) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈
ℂ) |
| 447 | 445, 446 | fsumcl 14464 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦 ∈ 𝐵) → Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈
ℂ) |
| 448 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) = (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) |
| 449 | 447, 448 | fmptd 6385 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))):𝐵⟶ℂ) |
| 450 | 32, 34 | elmap 7886 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) ∈ (ℂ
↑𝑚 𝐵) ↔ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))):𝐵⟶ℂ) |
| 451 | 449, 450 | sylibr 224 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) ∈ (ℂ
↑𝑚 𝐵)) |
| 452 | | eqid 2622 |
. . . . . 6
⊢ (𝑚 ∈ ℕ0
↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) = (𝑚 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) |
| 453 | 451, 452 | fmptd 6385 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑚 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 −
1))))))):ℕ0⟶(ℂ ↑𝑚 𝐵)) |
| 454 | 1, 310, 444, 453 | ulmres 24142 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((𝑚 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 −
1)))))))(⇝𝑢‘𝐵)(𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) ↔ ((𝑚 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾
ℕ)(⇝𝑢‘𝐵)(𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))))) |
| 455 | 442, 454 | mpbird 247 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑚 ∈ ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴‘𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 −
1)))))))(⇝𝑢‘𝐵)(𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) |
| 456 | 181, 455 | eqbrtrd 4675 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑚 ∈ ℕ0 ↦ (ℂ
D ((𝑘 ∈
ℕ0 ↦ (𝑦 ∈ 𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺‘𝑦)‘𝑖)))‘𝑚)))(⇝𝑢‘𝐵)(𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) |
| 457 | 1, 3, 4, 38, 48, 123, 456 | ulmdv 24157 |
1
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (ℂ D (𝐹 ↾ 𝐵)) = (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) |