![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unfilem2 | Structured version Visualization version GIF version |
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
unfilem1.1 | ⊢ 𝐴 ∈ ω |
unfilem1.2 | ⊢ 𝐵 ∈ ω |
unfilem1.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)) |
Ref | Expression |
---|---|
unfilem2 | ⊢ 𝐹:𝐵–1-1-onto→((𝐴 +𝑜 𝐵) ∖ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6678 | . . . . . 6 ⊢ (𝐴 +𝑜 𝑥) ∈ V | |
2 | unfilem1.3 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)) | |
3 | 1, 2 | fnmpti 6022 | . . . . 5 ⊢ 𝐹 Fn 𝐵 |
4 | unfilem1.1 | . . . . . 6 ⊢ 𝐴 ∈ ω | |
5 | unfilem1.2 | . . . . . 6 ⊢ 𝐵 ∈ ω | |
6 | 4, 5, 2 | unfilem1 8224 | . . . . 5 ⊢ ran 𝐹 = ((𝐴 +𝑜 𝐵) ∖ 𝐴) |
7 | df-fo 5894 | . . . . 5 ⊢ (𝐹:𝐵–onto→((𝐴 +𝑜 𝐵) ∖ 𝐴) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = ((𝐴 +𝑜 𝐵) ∖ 𝐴))) | |
8 | 3, 6, 7 | mpbir2an 955 | . . . 4 ⊢ 𝐹:𝐵–onto→((𝐴 +𝑜 𝐵) ∖ 𝐴) |
9 | fof 6115 | . . . 4 ⊢ (𝐹:𝐵–onto→((𝐴 +𝑜 𝐵) ∖ 𝐴) → 𝐹:𝐵⟶((𝐴 +𝑜 𝐵) ∖ 𝐴)) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ 𝐹:𝐵⟶((𝐴 +𝑜 𝐵) ∖ 𝐴) |
11 | oveq2 6658 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝑧)) | |
12 | ovex 6678 | . . . . . . . 8 ⊢ (𝐴 +𝑜 𝑧) ∈ V | |
13 | 11, 2, 12 | fvmpt 6282 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐵 → (𝐹‘𝑧) = (𝐴 +𝑜 𝑧)) |
14 | oveq2 6658 | . . . . . . . 8 ⊢ (𝑥 = 𝑤 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝑤)) | |
15 | ovex 6678 | . . . . . . . 8 ⊢ (𝐴 +𝑜 𝑤) ∈ V | |
16 | 14, 2, 15 | fvmpt 6282 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐵 → (𝐹‘𝑤) = (𝐴 +𝑜 𝑤)) |
17 | 13, 16 | eqeqan12d 2638 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ (𝐴 +𝑜 𝑧) = (𝐴 +𝑜 𝑤))) |
18 | elnn 7075 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝑧 ∈ ω) | |
19 | 5, 18 | mpan2 707 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐵 → 𝑧 ∈ ω) |
20 | elnn 7075 | . . . . . . . 8 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝑤 ∈ ω) | |
21 | 5, 20 | mpan2 707 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐵 → 𝑤 ∈ ω) |
22 | nnacan 7708 | . . . . . . . 8 ⊢ ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ 𝑤 ∈ ω) → ((𝐴 +𝑜 𝑧) = (𝐴 +𝑜 𝑤) ↔ 𝑧 = 𝑤)) | |
23 | 4, 22 | mp3an1 1411 | . . . . . . 7 ⊢ ((𝑧 ∈ ω ∧ 𝑤 ∈ ω) → ((𝐴 +𝑜 𝑧) = (𝐴 +𝑜 𝑤) ↔ 𝑧 = 𝑤)) |
24 | 19, 21, 23 | syl2an 494 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐴 +𝑜 𝑧) = (𝐴 +𝑜 𝑤) ↔ 𝑧 = 𝑤)) |
25 | 17, 24 | bitrd 268 | . . . . 5 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ 𝑧 = 𝑤)) |
26 | 25 | biimpd 219 | . . . 4 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
27 | 26 | rgen2a 2977 | . . 3 ⊢ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤) |
28 | dff13 6512 | . . 3 ⊢ (𝐹:𝐵–1-1→((𝐴 +𝑜 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵⟶((𝐴 +𝑜 𝐵) ∖ 𝐴) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) | |
29 | 10, 27, 28 | mpbir2an 955 | . 2 ⊢ 𝐹:𝐵–1-1→((𝐴 +𝑜 𝐵) ∖ 𝐴) |
30 | df-f1o 5895 | . 2 ⊢ (𝐹:𝐵–1-1-onto→((𝐴 +𝑜 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵–1-1→((𝐴 +𝑜 𝐵) ∖ 𝐴) ∧ 𝐹:𝐵–onto→((𝐴 +𝑜 𝐵) ∖ 𝐴))) | |
31 | 29, 8, 30 | mpbir2an 955 | 1 ⊢ 𝐹:𝐵–1-1-onto→((𝐴 +𝑜 𝐵) ∖ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∖ cdif 3571 ↦ cmpt 4729 ran crn 5115 Fn wfn 5883 ⟶wf 5884 –1-1→wf1 5885 –onto→wfo 5886 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 ωcom 7065 +𝑜 coa 7557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 |
This theorem is referenced by: unfilem3 8226 |
Copyright terms: Public domain | W3C validator |