MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfilem2 Structured version   Visualization version   Unicode version

Theorem unfilem2 8225
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
unfilem1.1  |-  A  e. 
om
unfilem1.2  |-  B  e. 
om
unfilem1.3  |-  F  =  ( x  e.  B  |->  ( A  +o  x
) )
Assertion
Ref Expression
unfilem2  |-  F : B
-1-1-onto-> ( ( A  +o  B )  \  A
)
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    F( x)

Proof of Theorem unfilem2
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6678 . . . . . 6  |-  ( A  +o  x )  e. 
_V
2 unfilem1.3 . . . . . 6  |-  F  =  ( x  e.  B  |->  ( A  +o  x
) )
31, 2fnmpti 6022 . . . . 5  |-  F  Fn  B
4 unfilem1.1 . . . . . 6  |-  A  e. 
om
5 unfilem1.2 . . . . . 6  |-  B  e. 
om
64, 5, 2unfilem1 8224 . . . . 5  |-  ran  F  =  ( ( A  +o  B )  \  A )
7 df-fo 5894 . . . . 5  |-  ( F : B -onto-> ( ( A  +o  B ) 
\  A )  <->  ( F  Fn  B  /\  ran  F  =  ( ( A  +o  B )  \  A ) ) )
83, 6, 7mpbir2an 955 . . . 4  |-  F : B -onto-> ( ( A  +o  B )  \  A )
9 fof 6115 . . . 4  |-  ( F : B -onto-> ( ( A  +o  B ) 
\  A )  ->  F : B --> ( ( A  +o  B ) 
\  A ) )
108, 9ax-mp 5 . . 3  |-  F : B
--> ( ( A  +o  B )  \  A
)
11 oveq2 6658 . . . . . . . 8  |-  ( x  =  z  ->  ( A  +o  x )  =  ( A  +o  z
) )
12 ovex 6678 . . . . . . . 8  |-  ( A  +o  z )  e. 
_V
1311, 2, 12fvmpt 6282 . . . . . . 7  |-  ( z  e.  B  ->  ( F `  z )  =  ( A  +o  z ) )
14 oveq2 6658 . . . . . . . 8  |-  ( x  =  w  ->  ( A  +o  x )  =  ( A  +o  w
) )
15 ovex 6678 . . . . . . . 8  |-  ( A  +o  w )  e. 
_V
1614, 2, 15fvmpt 6282 . . . . . . 7  |-  ( w  e.  B  ->  ( F `  w )  =  ( A  +o  w ) )
1713, 16eqeqan12d 2638 . . . . . 6  |-  ( ( z  e.  B  /\  w  e.  B )  ->  ( ( F `  z )  =  ( F `  w )  <-> 
( A  +o  z
)  =  ( A  +o  w ) ) )
18 elnn 7075 . . . . . . . 8  |-  ( ( z  e.  B  /\  B  e.  om )  ->  z  e.  om )
195, 18mpan2 707 . . . . . . 7  |-  ( z  e.  B  ->  z  e.  om )
20 elnn 7075 . . . . . . . 8  |-  ( ( w  e.  B  /\  B  e.  om )  ->  w  e.  om )
215, 20mpan2 707 . . . . . . 7  |-  ( w  e.  B  ->  w  e.  om )
22 nnacan 7708 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om  /\  w  e.  om )  ->  (
( A  +o  z
)  =  ( A  +o  w )  <->  z  =  w ) )
234, 22mp3an1 1411 . . . . . . 7  |-  ( ( z  e.  om  /\  w  e.  om )  ->  ( ( A  +o  z )  =  ( A  +o  w )  <-> 
z  =  w ) )
2419, 21, 23syl2an 494 . . . . . 6  |-  ( ( z  e.  B  /\  w  e.  B )  ->  ( ( A  +o  z )  =  ( A  +o  w )  <-> 
z  =  w ) )
2517, 24bitrd 268 . . . . 5  |-  ( ( z  e.  B  /\  w  e.  B )  ->  ( ( F `  z )  =  ( F `  w )  <-> 
z  =  w ) )
2625biimpd 219 . . . 4  |-  ( ( z  e.  B  /\  w  e.  B )  ->  ( ( F `  z )  =  ( F `  w )  ->  z  =  w ) )
2726rgen2a 2977 . . 3  |-  A. z  e.  B  A. w  e.  B  ( ( F `  z )  =  ( F `  w )  ->  z  =  w )
28 dff13 6512 . . 3  |-  ( F : B -1-1-> ( ( A  +o  B ) 
\  A )  <->  ( F : B --> ( ( A  +o  B )  \  A )  /\  A. z  e.  B  A. w  e.  B  (
( F `  z
)  =  ( F `
 w )  -> 
z  =  w ) ) )
2910, 27, 28mpbir2an 955 . 2  |-  F : B -1-1-> ( ( A  +o  B )  \  A )
30 df-f1o 5895 . 2  |-  ( F : B -1-1-onto-> ( ( A  +o  B )  \  A
)  <->  ( F : B -1-1-> ( ( A  +o  B )  \  A )  /\  F : B -onto-> ( ( A  +o  B )  \  A ) ) )
3129, 8, 30mpbir2an 955 1  |-  F : B
-1-1-onto-> ( ( A  +o  B )  \  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571    |-> cmpt 4729   ran crn 5115    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   omcom 7065    +o coa 7557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564
This theorem is referenced by:  unfilem3  8226
  Copyright terms: Public domain W3C validator