MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfilem1 Structured version   Visualization version   GIF version

Theorem unfilem1 8224
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
unfilem1.1 𝐴 ∈ ω
unfilem1.2 𝐵 ∈ ω
unfilem1.3 𝐹 = (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))
Assertion
Ref Expression
unfilem1 ran 𝐹 = ((𝐴 +𝑜 𝐵) ∖ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unfilem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 unfilem1.2 . . . . . . . . . 10 𝐵 ∈ ω
2 elnn 7075 . . . . . . . . . 10 ((𝑥𝐵𝐵 ∈ ω) → 𝑥 ∈ ω)
31, 2mpan2 707 . . . . . . . . 9 (𝑥𝐵𝑥 ∈ ω)
4 unfilem1.1 . . . . . . . . . 10 𝐴 ∈ ω
5 nnaord 7699 . . . . . . . . . 10 ((𝑥 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝑥𝐵 ↔ (𝐴 +𝑜 𝑥) ∈ (𝐴 +𝑜 𝐵)))
61, 4, 5mp3an23 1416 . . . . . . . . 9 (𝑥 ∈ ω → (𝑥𝐵 ↔ (𝐴 +𝑜 𝑥) ∈ (𝐴 +𝑜 𝐵)))
73, 6syl 17 . . . . . . . 8 (𝑥𝐵 → (𝑥𝐵 ↔ (𝐴 +𝑜 𝑥) ∈ (𝐴 +𝑜 𝐵)))
87ibi 256 . . . . . . 7 (𝑥𝐵 → (𝐴 +𝑜 𝑥) ∈ (𝐴 +𝑜 𝐵))
9 nnaword1 7709 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → 𝐴 ⊆ (𝐴 +𝑜 𝑥))
10 nnord 7073 . . . . . . . . . . 11 (𝐴 ∈ ω → Ord 𝐴)
114, 10ax-mp 5 . . . . . . . . . 10 Ord 𝐴
12 nnacl 7691 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +𝑜 𝑥) ∈ ω)
13 nnord 7073 . . . . . . . . . . 11 ((𝐴 +𝑜 𝑥) ∈ ω → Ord (𝐴 +𝑜 𝑥))
1412, 13syl 17 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → Ord (𝐴 +𝑜 𝑥))
15 ordtri1 5756 . . . . . . . . . 10 ((Ord 𝐴 ∧ Ord (𝐴 +𝑜 𝑥)) → (𝐴 ⊆ (𝐴 +𝑜 𝑥) ↔ ¬ (𝐴 +𝑜 𝑥) ∈ 𝐴))
1611, 14, 15sylancr 695 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ⊆ (𝐴 +𝑜 𝑥) ↔ ¬ (𝐴 +𝑜 𝑥) ∈ 𝐴))
179, 16mpbid 222 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ¬ (𝐴 +𝑜 𝑥) ∈ 𝐴)
184, 3, 17sylancr 695 . . . . . . 7 (𝑥𝐵 → ¬ (𝐴 +𝑜 𝑥) ∈ 𝐴)
198, 18jca 554 . . . . . 6 (𝑥𝐵 → ((𝐴 +𝑜 𝑥) ∈ (𝐴 +𝑜 𝐵) ∧ ¬ (𝐴 +𝑜 𝑥) ∈ 𝐴))
20 eleq1 2689 . . . . . . . 8 (𝑦 = (𝐴 +𝑜 𝑥) → (𝑦 ∈ (𝐴 +𝑜 𝐵) ↔ (𝐴 +𝑜 𝑥) ∈ (𝐴 +𝑜 𝐵)))
21 eleq1 2689 . . . . . . . . 9 (𝑦 = (𝐴 +𝑜 𝑥) → (𝑦𝐴 ↔ (𝐴 +𝑜 𝑥) ∈ 𝐴))
2221notbid 308 . . . . . . . 8 (𝑦 = (𝐴 +𝑜 𝑥) → (¬ 𝑦𝐴 ↔ ¬ (𝐴 +𝑜 𝑥) ∈ 𝐴))
2320, 22anbi12d 747 . . . . . . 7 (𝑦 = (𝐴 +𝑜 𝑥) → ((𝑦 ∈ (𝐴 +𝑜 𝐵) ∧ ¬ 𝑦𝐴) ↔ ((𝐴 +𝑜 𝑥) ∈ (𝐴 +𝑜 𝐵) ∧ ¬ (𝐴 +𝑜 𝑥) ∈ 𝐴)))
2423biimparc 504 . . . . . 6 ((((𝐴 +𝑜 𝑥) ∈ (𝐴 +𝑜 𝐵) ∧ ¬ (𝐴 +𝑜 𝑥) ∈ 𝐴) ∧ 𝑦 = (𝐴 +𝑜 𝑥)) → (𝑦 ∈ (𝐴 +𝑜 𝐵) ∧ ¬ 𝑦𝐴))
2519, 24sylan 488 . . . . 5 ((𝑥𝐵𝑦 = (𝐴 +𝑜 𝑥)) → (𝑦 ∈ (𝐴 +𝑜 𝐵) ∧ ¬ 𝑦𝐴))
2625rexlimiva 3028 . . . 4 (∃𝑥𝐵 𝑦 = (𝐴 +𝑜 𝑥) → (𝑦 ∈ (𝐴 +𝑜 𝐵) ∧ ¬ 𝑦𝐴))
274, 1nnacli 7694 . . . . . . . 8 (𝐴 +𝑜 𝐵) ∈ ω
28 elnn 7075 . . . . . . . 8 ((𝑦 ∈ (𝐴 +𝑜 𝐵) ∧ (𝐴 +𝑜 𝐵) ∈ ω) → 𝑦 ∈ ω)
2927, 28mpan2 707 . . . . . . 7 (𝑦 ∈ (𝐴 +𝑜 𝐵) → 𝑦 ∈ ω)
30 nnord 7073 . . . . . . . . 9 (𝑦 ∈ ω → Ord 𝑦)
31 ordtri1 5756 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝑦) → (𝐴𝑦 ↔ ¬ 𝑦𝐴))
3210, 30, 31syl2an 494 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴𝑦 ↔ ¬ 𝑦𝐴))
33 nnawordex 7717 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴𝑦 ↔ ∃𝑥 ∈ ω (𝐴 +𝑜 𝑥) = 𝑦))
3432, 33bitr3d 270 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (¬ 𝑦𝐴 ↔ ∃𝑥 ∈ ω (𝐴 +𝑜 𝑥) = 𝑦))
354, 29, 34sylancr 695 . . . . . 6 (𝑦 ∈ (𝐴 +𝑜 𝐵) → (¬ 𝑦𝐴 ↔ ∃𝑥 ∈ ω (𝐴 +𝑜 𝑥) = 𝑦))
36 eleq1 2689 . . . . . . . . . 10 ((𝐴 +𝑜 𝑥) = 𝑦 → ((𝐴 +𝑜 𝑥) ∈ (𝐴 +𝑜 𝐵) ↔ 𝑦 ∈ (𝐴 +𝑜 𝐵)))
376, 36sylan9bb 736 . . . . . . . . 9 ((𝑥 ∈ ω ∧ (𝐴 +𝑜 𝑥) = 𝑦) → (𝑥𝐵𝑦 ∈ (𝐴 +𝑜 𝐵)))
3837biimprcd 240 . . . . . . . 8 (𝑦 ∈ (𝐴 +𝑜 𝐵) → ((𝑥 ∈ ω ∧ (𝐴 +𝑜 𝑥) = 𝑦) → 𝑥𝐵))
39 eqcom 2629 . . . . . . . . . . 11 ((𝐴 +𝑜 𝑥) = 𝑦𝑦 = (𝐴 +𝑜 𝑥))
4039biimpi 206 . . . . . . . . . 10 ((𝐴 +𝑜 𝑥) = 𝑦𝑦 = (𝐴 +𝑜 𝑥))
4140adantl 482 . . . . . . . . 9 ((𝑥 ∈ ω ∧ (𝐴 +𝑜 𝑥) = 𝑦) → 𝑦 = (𝐴 +𝑜 𝑥))
4241a1i 11 . . . . . . . 8 (𝑦 ∈ (𝐴 +𝑜 𝐵) → ((𝑥 ∈ ω ∧ (𝐴 +𝑜 𝑥) = 𝑦) → 𝑦 = (𝐴 +𝑜 𝑥)))
4338, 42jcad 555 . . . . . . 7 (𝑦 ∈ (𝐴 +𝑜 𝐵) → ((𝑥 ∈ ω ∧ (𝐴 +𝑜 𝑥) = 𝑦) → (𝑥𝐵𝑦 = (𝐴 +𝑜 𝑥))))
4443reximdv2 3014 . . . . . 6 (𝑦 ∈ (𝐴 +𝑜 𝐵) → (∃𝑥 ∈ ω (𝐴 +𝑜 𝑥) = 𝑦 → ∃𝑥𝐵 𝑦 = (𝐴 +𝑜 𝑥)))
4535, 44sylbid 230 . . . . 5 (𝑦 ∈ (𝐴 +𝑜 𝐵) → (¬ 𝑦𝐴 → ∃𝑥𝐵 𝑦 = (𝐴 +𝑜 𝑥)))
4645imp 445 . . . 4 ((𝑦 ∈ (𝐴 +𝑜 𝐵) ∧ ¬ 𝑦𝐴) → ∃𝑥𝐵 𝑦 = (𝐴 +𝑜 𝑥))
4726, 46impbii 199 . . 3 (∃𝑥𝐵 𝑦 = (𝐴 +𝑜 𝑥) ↔ (𝑦 ∈ (𝐴 +𝑜 𝐵) ∧ ¬ 𝑦𝐴))
48 unfilem1.3 . . . 4 𝐹 = (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))
49 ovex 6678 . . . 4 (𝐴 +𝑜 𝑥) ∈ V
5048, 49elrnmpti 5376 . . 3 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝐵 𝑦 = (𝐴 +𝑜 𝑥))
51 eldif 3584 . . 3 (𝑦 ∈ ((𝐴 +𝑜 𝐵) ∖ 𝐴) ↔ (𝑦 ∈ (𝐴 +𝑜 𝐵) ∧ ¬ 𝑦𝐴))
5247, 50, 513bitr4i 292 . 2 (𝑦 ∈ ran 𝐹𝑦 ∈ ((𝐴 +𝑜 𝐵) ∖ 𝐴))
5352eqriv 2619 1 ran 𝐹 = ((𝐴 +𝑜 𝐵) ∖ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  cdif 3571  wss 3574  cmpt 4729  ran crn 5115  Ord word 5722  (class class class)co 6650  ωcom 7065   +𝑜 coa 7557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564
This theorem is referenced by:  unfilem2  8225
  Copyright terms: Public domain W3C validator