Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unirnmap Structured version   Visualization version   GIF version

Theorem unirnmap 39400
Description: Given a subset of a set exponentiation, the base set can be restricted. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
unirnmap.a (𝜑𝐴𝑉)
unirnmap.x (𝜑𝑋 ⊆ (𝐵𝑚 𝐴))
Assertion
Ref Expression
unirnmap (𝜑𝑋 ⊆ (ran 𝑋𝑚 𝐴))

Proof of Theorem unirnmap
Dummy variables 𝑔 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unirnmap.x . . . . . . . 8 (𝜑𝑋 ⊆ (𝐵𝑚 𝐴))
21sselda 3603 . . . . . . 7 ((𝜑𝑔𝑋) → 𝑔 ∈ (𝐵𝑚 𝐴))
3 elmapfn 7880 . . . . . . 7 (𝑔 ∈ (𝐵𝑚 𝐴) → 𝑔 Fn 𝐴)
42, 3syl 17 . . . . . 6 ((𝜑𝑔𝑋) → 𝑔 Fn 𝐴)
5 simplr 792 . . . . . . . . . 10 (((𝜑𝑔𝑋) ∧ 𝑥𝐴) → 𝑔𝑋)
6 dffn3 6054 . . . . . . . . . . . 12 (𝑔 Fn 𝐴𝑔:𝐴⟶ran 𝑔)
74, 6sylib 208 . . . . . . . . . . 11 ((𝜑𝑔𝑋) → 𝑔:𝐴⟶ran 𝑔)
87ffvelrnda 6359 . . . . . . . . . 10 (((𝜑𝑔𝑋) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ran 𝑔)
9 rneq 5351 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔)
109eleq2d 2687 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑔𝑥) ∈ ran 𝑓 ↔ (𝑔𝑥) ∈ ran 𝑔))
1110rspcev 3309 . . . . . . . . . 10 ((𝑔𝑋 ∧ (𝑔𝑥) ∈ ran 𝑔) → ∃𝑓𝑋 (𝑔𝑥) ∈ ran 𝑓)
125, 8, 11syl2anc 693 . . . . . . . . 9 (((𝜑𝑔𝑋) ∧ 𝑥𝐴) → ∃𝑓𝑋 (𝑔𝑥) ∈ ran 𝑓)
13 eliun 4524 . . . . . . . . 9 ((𝑔𝑥) ∈ 𝑓𝑋 ran 𝑓 ↔ ∃𝑓𝑋 (𝑔𝑥) ∈ ran 𝑓)
1412, 13sylibr 224 . . . . . . . 8 (((𝜑𝑔𝑋) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ 𝑓𝑋 ran 𝑓)
15 rnuni 5544 . . . . . . . 8 ran 𝑋 = 𝑓𝑋 ran 𝑓
1614, 15syl6eleqr 2712 . . . . . . 7 (((𝜑𝑔𝑋) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ran 𝑋)
1716ralrimiva 2966 . . . . . 6 ((𝜑𝑔𝑋) → ∀𝑥𝐴 (𝑔𝑥) ∈ ran 𝑋)
184, 17jca 554 . . . . 5 ((𝜑𝑔𝑋) → (𝑔 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ ran 𝑋))
19 ffnfv 6388 . . . . 5 (𝑔:𝐴⟶ran 𝑋 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ ran 𝑋))
2018, 19sylibr 224 . . . 4 ((𝜑𝑔𝑋) → 𝑔:𝐴⟶ran 𝑋)
21 ovexd 6680 . . . . . . . . 9 (𝜑 → (𝐵𝑚 𝐴) ∈ V)
2221, 1ssexd 4805 . . . . . . . 8 (𝜑𝑋 ∈ V)
23 uniexg 6955 . . . . . . . 8 (𝑋 ∈ V → 𝑋 ∈ V)
2422, 23syl 17 . . . . . . 7 (𝜑 𝑋 ∈ V)
25 rnexg 7098 . . . . . . 7 ( 𝑋 ∈ V → ran 𝑋 ∈ V)
2624, 25syl 17 . . . . . 6 (𝜑 → ran 𝑋 ∈ V)
27 unirnmap.a . . . . . 6 (𝜑𝐴𝑉)
2826, 27elmapd 7871 . . . . 5 (𝜑 → (𝑔 ∈ (ran 𝑋𝑚 𝐴) ↔ 𝑔:𝐴⟶ran 𝑋))
2928adantr 481 . . . 4 ((𝜑𝑔𝑋) → (𝑔 ∈ (ran 𝑋𝑚 𝐴) ↔ 𝑔:𝐴⟶ran 𝑋))
3020, 29mpbird 247 . . 3 ((𝜑𝑔𝑋) → 𝑔 ∈ (ran 𝑋𝑚 𝐴))
3130ralrimiva 2966 . 2 (𝜑 → ∀𝑔𝑋 𝑔 ∈ (ran 𝑋𝑚 𝐴))
32 dfss3 3592 . 2 (𝑋 ⊆ (ran 𝑋𝑚 𝐴) ↔ ∀𝑔𝑋 𝑔 ∈ (ran 𝑋𝑚 𝐴))
3331, 32sylibr 224 1 (𝜑𝑋 ⊆ (ran 𝑋𝑚 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574   cuni 4436   ciun 4520  ran crn 5115   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  unirnmapsn  39406
  Copyright terms: Public domain W3C validator