Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inmap Structured version   Visualization version   GIF version

Theorem inmap 39401
Description: Intersection of two sets exponentiations. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
inmap.a (𝜑𝐴𝑉)
inmap.b (𝜑𝐵𝑊)
inmap.c (𝜑𝐶𝑍)
Assertion
Ref Expression
inmap (𝜑 → ((𝐴𝑚 𝐶) ∩ (𝐵𝑚 𝐶)) = ((𝐴𝐵) ↑𝑚 𝐶))

Proof of Theorem inmap
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elinel1 3799 . . . . . . . . 9 (𝑓 ∈ ((𝐴𝑚 𝐶) ∩ (𝐵𝑚 𝐶)) → 𝑓 ∈ (𝐴𝑚 𝐶))
2 elmapi 7879 . . . . . . . . 9 (𝑓 ∈ (𝐴𝑚 𝐶) → 𝑓:𝐶𝐴)
31, 2syl 17 . . . . . . . 8 (𝑓 ∈ ((𝐴𝑚 𝐶) ∩ (𝐵𝑚 𝐶)) → 𝑓:𝐶𝐴)
4 elinel2 3800 . . . . . . . . 9 (𝑓 ∈ ((𝐴𝑚 𝐶) ∩ (𝐵𝑚 𝐶)) → 𝑓 ∈ (𝐵𝑚 𝐶))
5 elmapi 7879 . . . . . . . . 9 (𝑓 ∈ (𝐵𝑚 𝐶) → 𝑓:𝐶𝐵)
64, 5syl 17 . . . . . . . 8 (𝑓 ∈ ((𝐴𝑚 𝐶) ∩ (𝐵𝑚 𝐶)) → 𝑓:𝐶𝐵)
73, 6jca 554 . . . . . . 7 (𝑓 ∈ ((𝐴𝑚 𝐶) ∩ (𝐵𝑚 𝐶)) → (𝑓:𝐶𝐴𝑓:𝐶𝐵))
8 fin 6085 . . . . . . 7 (𝑓:𝐶⟶(𝐴𝐵) ↔ (𝑓:𝐶𝐴𝑓:𝐶𝐵))
97, 8sylibr 224 . . . . . 6 (𝑓 ∈ ((𝐴𝑚 𝐶) ∩ (𝐵𝑚 𝐶)) → 𝑓:𝐶⟶(𝐴𝐵))
109adantl 482 . . . . 5 ((𝜑𝑓 ∈ ((𝐴𝑚 𝐶) ∩ (𝐵𝑚 𝐶))) → 𝑓:𝐶⟶(𝐴𝐵))
11 inmap.a . . . . . . . 8 (𝜑𝐴𝑉)
12 inss1 3833 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
1312a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
1411, 13ssexd 4805 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ V)
15 inmap.c . . . . . . 7 (𝜑𝐶𝑍)
1614, 15elmapd 7871 . . . . . 6 (𝜑 → (𝑓 ∈ ((𝐴𝐵) ↑𝑚 𝐶) ↔ 𝑓:𝐶⟶(𝐴𝐵)))
1716adantr 481 . . . . 5 ((𝜑𝑓 ∈ ((𝐴𝑚 𝐶) ∩ (𝐵𝑚 𝐶))) → (𝑓 ∈ ((𝐴𝐵) ↑𝑚 𝐶) ↔ 𝑓:𝐶⟶(𝐴𝐵)))
1810, 17mpbird 247 . . . 4 ((𝜑𝑓 ∈ ((𝐴𝑚 𝐶) ∩ (𝐵𝑚 𝐶))) → 𝑓 ∈ ((𝐴𝐵) ↑𝑚 𝐶))
1918ralrimiva 2966 . . 3 (𝜑 → ∀𝑓 ∈ ((𝐴𝑚 𝐶) ∩ (𝐵𝑚 𝐶))𝑓 ∈ ((𝐴𝐵) ↑𝑚 𝐶))
20 dfss3 3592 . . 3 (((𝐴𝑚 𝐶) ∩ (𝐵𝑚 𝐶)) ⊆ ((𝐴𝐵) ↑𝑚 𝐶) ↔ ∀𝑓 ∈ ((𝐴𝑚 𝐶) ∩ (𝐵𝑚 𝐶))𝑓 ∈ ((𝐴𝐵) ↑𝑚 𝐶))
2119, 20sylibr 224 . 2 (𝜑 → ((𝐴𝑚 𝐶) ∩ (𝐵𝑚 𝐶)) ⊆ ((𝐴𝐵) ↑𝑚 𝐶))
22 mapss 7900 . . . 4 ((𝐴𝑉 ∧ (𝐴𝐵) ⊆ 𝐴) → ((𝐴𝐵) ↑𝑚 𝐶) ⊆ (𝐴𝑚 𝐶))
2311, 13, 22syl2anc 693 . . 3 (𝜑 → ((𝐴𝐵) ↑𝑚 𝐶) ⊆ (𝐴𝑚 𝐶))
24 inmap.b . . . 4 (𝜑𝐵𝑊)
25 inss2 3834 . . . . 5 (𝐴𝐵) ⊆ 𝐵
2625a1i 11 . . . 4 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
27 mapss 7900 . . . 4 ((𝐵𝑊 ∧ (𝐴𝐵) ⊆ 𝐵) → ((𝐴𝐵) ↑𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
2824, 26, 27syl2anc 693 . . 3 (𝜑 → ((𝐴𝐵) ↑𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
2923, 28ssind 3837 . 2 (𝜑 → ((𝐴𝐵) ↑𝑚 𝐶) ⊆ ((𝐴𝑚 𝐶) ∩ (𝐵𝑚 𝐶)))
3021, 29eqssd 3620 1 (𝜑 → ((𝐴𝑚 𝐶) ∩ (𝐵𝑚 𝐶)) = ((𝐴𝐵) ↑𝑚 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cin 3573  wss 3574  wf 5884  (class class class)co 6650  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  vonvolmbllem  40874  vonvolmbl  40875
  Copyright terms: Public domain W3C validator