Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unirnmap Structured version   Visualization version   Unicode version

Theorem unirnmap 39400
Description: Given a subset of a set exponentiation, the base set can be restricted. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
unirnmap.a  |-  ( ph  ->  A  e.  V )
unirnmap.x  |-  ( ph  ->  X  C_  ( B  ^m  A ) )
Assertion
Ref Expression
unirnmap  |-  ( ph  ->  X  C_  ( ran  U. X  ^m  A ) )

Proof of Theorem unirnmap
Dummy variables  g  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unirnmap.x . . . . . . . 8  |-  ( ph  ->  X  C_  ( B  ^m  A ) )
21sselda 3603 . . . . . . 7  |-  ( (
ph  /\  g  e.  X )  ->  g  e.  ( B  ^m  A
) )
3 elmapfn 7880 . . . . . . 7  |-  ( g  e.  ( B  ^m  A )  ->  g  Fn  A )
42, 3syl 17 . . . . . 6  |-  ( (
ph  /\  g  e.  X )  ->  g  Fn  A )
5 simplr 792 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  X )  /\  x  e.  A )  ->  g  e.  X )
6 dffn3 6054 . . . . . . . . . . . 12  |-  ( g  Fn  A  <->  g : A
--> ran  g )
74, 6sylib 208 . . . . . . . . . . 11  |-  ( (
ph  /\  g  e.  X )  ->  g : A --> ran  g )
87ffvelrnda 6359 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  X )  /\  x  e.  A )  ->  (
g `  x )  e.  ran  g )
9 rneq 5351 . . . . . . . . . . . 12  |-  ( f  =  g  ->  ran  f  =  ran  g )
109eleq2d 2687 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
( g `  x
)  e.  ran  f  <->  ( g `  x )  e.  ran  g ) )
1110rspcev 3309 . . . . . . . . . 10  |-  ( ( g  e.  X  /\  ( g `  x
)  e.  ran  g
)  ->  E. f  e.  X  ( g `  x )  e.  ran  f )
125, 8, 11syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  X )  /\  x  e.  A )  ->  E. f  e.  X  ( g `  x )  e.  ran  f )
13 eliun 4524 . . . . . . . . 9  |-  ( ( g `  x )  e.  U_ f  e.  X  ran  f  <->  E. f  e.  X  ( g `  x )  e.  ran  f )
1412, 13sylibr 224 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  X )  /\  x  e.  A )  ->  (
g `  x )  e.  U_ f  e.  X  ran  f )
15 rnuni 5544 . . . . . . . 8  |-  ran  U. X  =  U_ f  e.  X  ran  f
1614, 15syl6eleqr 2712 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  X )  /\  x  e.  A )  ->  (
g `  x )  e.  ran  U. X )
1716ralrimiva 2966 . . . . . 6  |-  ( (
ph  /\  g  e.  X )  ->  A. x  e.  A  ( g `  x )  e.  ran  U. X )
184, 17jca 554 . . . . 5  |-  ( (
ph  /\  g  e.  X )  ->  (
g  Fn  A  /\  A. x  e.  A  ( g `  x )  e.  ran  U. X
) )
19 ffnfv 6388 . . . . 5  |-  ( g : A --> ran  U. X 
<->  ( g  Fn  A  /\  A. x  e.  A  ( g `  x
)  e.  ran  U. X ) )
2018, 19sylibr 224 . . . 4  |-  ( (
ph  /\  g  e.  X )  ->  g : A --> ran  U. X )
21 ovexd 6680 . . . . . . . . 9  |-  ( ph  ->  ( B  ^m  A
)  e.  _V )
2221, 1ssexd 4805 . . . . . . . 8  |-  ( ph  ->  X  e.  _V )
23 uniexg 6955 . . . . . . . 8  |-  ( X  e.  _V  ->  U. X  e.  _V )
2422, 23syl 17 . . . . . . 7  |-  ( ph  ->  U. X  e.  _V )
25 rnexg 7098 . . . . . . 7  |-  ( U. X  e.  _V  ->  ran  U. X  e.  _V )
2624, 25syl 17 . . . . . 6  |-  ( ph  ->  ran  U. X  e. 
_V )
27 unirnmap.a . . . . . 6  |-  ( ph  ->  A  e.  V )
2826, 27elmapd 7871 . . . . 5  |-  ( ph  ->  ( g  e.  ( ran  U. X  ^m  A )  <->  g : A
--> ran  U. X ) )
2928adantr 481 . . . 4  |-  ( (
ph  /\  g  e.  X )  ->  (
g  e.  ( ran  U. X  ^m  A )  <-> 
g : A --> ran  U. X ) )
3020, 29mpbird 247 . . 3  |-  ( (
ph  /\  g  e.  X )  ->  g  e.  ( ran  U. X  ^m  A ) )
3130ralrimiva 2966 . 2  |-  ( ph  ->  A. g  e.  X  g  e.  ( ran  U. X  ^m  A ) )
32 dfss3 3592 . 2  |-  ( X 
C_  ( ran  U. X  ^m  A )  <->  A. g  e.  X  g  e.  ( ran  U. X  ^m  A ) )
3331, 32sylibr 224 1  |-  ( ph  ->  X  C_  ( ran  U. X  ^m  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   U.cuni 4436   U_ciun 4520   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  unirnmapsn  39406
  Copyright terms: Public domain W3C validator