MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numedglnl Structured version   Visualization version   GIF version

Theorem numedglnl 26039
Description: The number of edges incident with a vertex 𝑁 is the number of edges joining 𝑁 with other vertices and the number of loops on 𝑁 in a pseudograph of finite size. (Contributed by AV, 19-Dec-2021.)
Hypotheses
Ref Expression
edglnl.v 𝑉 = (Vtx‘𝐺)
edglnl.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
numedglnl ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) = (#‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))
Distinct variable groups:   𝑣,𝐸   𝑖,𝐺   𝑖,𝑁,𝑣   𝑖,𝑉,𝑣   𝑖,𝐸   𝑣,𝐺

Proof of Theorem numedglnl
Dummy variables 𝑚 𝑛 𝑤 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diffi 8192 . . . . . . 7 (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin)
21adantr 481 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (𝑉 ∖ {𝑁}) ∈ Fin)
323ad2ant2 1083 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → (𝑉 ∖ {𝑁}) ∈ Fin)
4 dmfi 8244 . . . . . . . . 9 (𝐸 ∈ Fin → dom 𝐸 ∈ Fin)
5 rabfi 8185 . . . . . . . . 9 (dom 𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∈ Fin)
64, 5syl 17 . . . . . . . 8 (𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∈ Fin)
76adantl 482 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∈ Fin)
873ad2ant2 1083 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∈ Fin)
98adantr 481 . . . . 5 (((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∈ Fin)
10 notnotb 304 . . . . . . . . . . . . . 14 (𝑁 ∈ (𝐸𝑖) ↔ ¬ ¬ 𝑁 ∈ (𝐸𝑖))
11 notnotb 304 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ (𝐸𝑖) ↔ ¬ ¬ 𝑣 ∈ (𝐸𝑖))
12 upgruhgr 25997 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph )
13 edglnl.e . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐸 = (iEdg‘𝐺)
1413uhgrfun 25961 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐺 ∈ UHGraph → Fun 𝐸)
1512, 14syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐺 ∈ UPGraph → Fun 𝐸)
1613iedgedg 25943 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 𝐸𝑖 ∈ dom 𝐸) → (𝐸𝑖) ∈ (Edg‘𝐺))
1715, 16sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐺 ∈ UPGraph ∧ 𝑖 ∈ dom 𝐸) → (𝐸𝑖) ∈ (Edg‘𝐺))
18 edglnl.v . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑉 = (Vtx‘𝐺)
19 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Edg‘𝐺) = (Edg‘𝐺)
2018, 19upgredg 26032 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐺 ∈ UPGraph ∧ (𝐸𝑖) ∈ (Edg‘𝐺)) → ∃𝑚𝑉𝑛𝑉 (𝐸𝑖) = {𝑚, 𝑛})
2117, 20syldan 487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ UPGraph ∧ 𝑖 ∈ dom 𝐸) → ∃𝑚𝑉𝑛𝑉 (𝐸𝑖) = {𝑚, 𝑛})
2221ex 450 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 ∈ UPGraph → (𝑖 ∈ dom 𝐸 → ∃𝑚𝑉𝑛𝑉 (𝐸𝑖) = {𝑚, 𝑛}))
23223ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → (𝑖 ∈ dom 𝐸 → ∃𝑚𝑉𝑛𝑉 (𝐸𝑖) = {𝑚, 𝑛}))
2423adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) → (𝑖 ∈ dom 𝐸 → ∃𝑚𝑉𝑛𝑉 (𝐸𝑖) = {𝑚, 𝑛}))
2524adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) → (𝑖 ∈ dom 𝐸 → ∃𝑚𝑉𝑛𝑉 (𝐸𝑖) = {𝑚, 𝑛}))
2625imp 445 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) → ∃𝑚𝑉𝑛𝑉 (𝐸𝑖) = {𝑚, 𝑛})
27 eldifsni 4320 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣𝑁)
28 eldifsni 4320 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ (𝑉 ∖ {𝑁}) → 𝑤𝑁)
29 3elpr2eq 4435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑁 ∈ {𝑚, 𝑛} ∧ 𝑣 ∈ {𝑚, 𝑛} ∧ 𝑤 ∈ {𝑚, 𝑛}) ∧ (𝑣𝑁𝑤𝑁)) → 𝑣 = 𝑤)
3029expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑣𝑁𝑤𝑁) → ((𝑁 ∈ {𝑚, 𝑛} ∧ 𝑣 ∈ {𝑚, 𝑛} ∧ 𝑤 ∈ {𝑚, 𝑛}) → 𝑣 = 𝑤))
31303expd 1284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑣𝑁𝑤𝑁) → (𝑁 ∈ {𝑚, 𝑛} → (𝑣 ∈ {𝑚, 𝑛} → (𝑤 ∈ {𝑚, 𝑛} → 𝑣 = 𝑤))))
3231com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑣𝑁𝑤𝑁) → (𝑣 ∈ {𝑚, 𝑛} → (𝑁 ∈ {𝑚, 𝑛} → (𝑤 ∈ {𝑚, 𝑛} → 𝑣 = 𝑤))))
33323imp 1256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑣𝑁𝑤𝑁) ∧ 𝑣 ∈ {𝑚, 𝑛} ∧ 𝑁 ∈ {𝑚, 𝑛}) → (𝑤 ∈ {𝑚, 𝑛} → 𝑣 = 𝑤))
3433con3d 148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑣𝑁𝑤𝑁) ∧ 𝑣 ∈ {𝑚, 𝑛} ∧ 𝑁 ∈ {𝑚, 𝑛}) → (¬ 𝑣 = 𝑤 → ¬ 𝑤 ∈ {𝑚, 𝑛}))
35343exp 1264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑣𝑁𝑤𝑁) → (𝑣 ∈ {𝑚, 𝑛} → (𝑁 ∈ {𝑚, 𝑛} → (¬ 𝑣 = 𝑤 → ¬ 𝑤 ∈ {𝑚, 𝑛}))))
3635com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣𝑁𝑤𝑁) → (¬ 𝑣 = 𝑤 → (𝑁 ∈ {𝑚, 𝑛} → (𝑣 ∈ {𝑚, 𝑛} → ¬ 𝑤 ∈ {𝑚, 𝑛}))))
3736imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑣𝑁𝑤𝑁) ∧ ¬ 𝑣 = 𝑤) → (𝑁 ∈ {𝑚, 𝑛} → (𝑣 ∈ {𝑚, 𝑛} → ¬ 𝑤 ∈ {𝑚, 𝑛})))
38 eleq2 2690 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐸𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸𝑖) ↔ 𝑁 ∈ {𝑚, 𝑛}))
39 eleq2 2690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐸𝑖) = {𝑚, 𝑛} → (𝑣 ∈ (𝐸𝑖) ↔ 𝑣 ∈ {𝑚, 𝑛}))
40 eleq2 2690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐸𝑖) = {𝑚, 𝑛} → (𝑤 ∈ (𝐸𝑖) ↔ 𝑤 ∈ {𝑚, 𝑛}))
4140notbid 308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐸𝑖) = {𝑚, 𝑛} → (¬ 𝑤 ∈ (𝐸𝑖) ↔ ¬ 𝑤 ∈ {𝑚, 𝑛}))
4239, 41imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐸𝑖) = {𝑚, 𝑛} → ((𝑣 ∈ (𝐸𝑖) → ¬ 𝑤 ∈ (𝐸𝑖)) ↔ (𝑣 ∈ {𝑚, 𝑛} → ¬ 𝑤 ∈ {𝑚, 𝑛})))
4338, 42imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐸𝑖) = {𝑚, 𝑛} → ((𝑁 ∈ (𝐸𝑖) → (𝑣 ∈ (𝐸𝑖) → ¬ 𝑤 ∈ (𝐸𝑖))) ↔ (𝑁 ∈ {𝑚, 𝑛} → (𝑣 ∈ {𝑚, 𝑛} → ¬ 𝑤 ∈ {𝑚, 𝑛}))))
4437, 43syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑣𝑁𝑤𝑁) ∧ ¬ 𝑣 = 𝑤) → ((𝐸𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸𝑖) → (𝑣 ∈ (𝐸𝑖) → ¬ 𝑤 ∈ (𝐸𝑖)))))
4544adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑣𝑁𝑤𝑁) ∧ ¬ 𝑣 = 𝑤) ∧ (𝑚𝑉𝑛𝑉)) → ((𝐸𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸𝑖) → (𝑣 ∈ (𝐸𝑖) → ¬ 𝑤 ∈ (𝐸𝑖)))))
4645rexlimdvva 3038 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑣𝑁𝑤𝑁) ∧ ¬ 𝑣 = 𝑤) → (∃𝑚𝑉𝑛𝑉 (𝐸𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸𝑖) → (𝑣 ∈ (𝐸𝑖) → ¬ 𝑤 ∈ (𝐸𝑖)))))
4746ex 450 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣𝑁𝑤𝑁) → (¬ 𝑣 = 𝑤 → (∃𝑚𝑉𝑛𝑉 (𝐸𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸𝑖) → (𝑣 ∈ (𝐸𝑖) → ¬ 𝑤 ∈ (𝐸𝑖))))))
4827, 28, 47syl2an 494 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁})) → (¬ 𝑣 = 𝑤 → (∃𝑚𝑉𝑛𝑉 (𝐸𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸𝑖) → (𝑣 ∈ (𝐸𝑖) → ¬ 𝑤 ∈ (𝐸𝑖))))))
4948adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) → (¬ 𝑣 = 𝑤 → (∃𝑚𝑉𝑛𝑉 (𝐸𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸𝑖) → (𝑣 ∈ (𝐸𝑖) → ¬ 𝑤 ∈ (𝐸𝑖))))))
5049imp 445 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) → (∃𝑚𝑉𝑛𝑉 (𝐸𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸𝑖) → (𝑣 ∈ (𝐸𝑖) → ¬ 𝑤 ∈ (𝐸𝑖)))))
5150adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) → (∃𝑚𝑉𝑛𝑉 (𝐸𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸𝑖) → (𝑣 ∈ (𝐸𝑖) → ¬ 𝑤 ∈ (𝐸𝑖)))))
5226, 51mpd 15 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) → (𝑁 ∈ (𝐸𝑖) → (𝑣 ∈ (𝐸𝑖) → ¬ 𝑤 ∈ (𝐸𝑖))))
5352imp 445 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) ∧ 𝑁 ∈ (𝐸𝑖)) → (𝑣 ∈ (𝐸𝑖) → ¬ 𝑤 ∈ (𝐸𝑖)))
5411, 53syl5bir 233 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) ∧ 𝑁 ∈ (𝐸𝑖)) → (¬ ¬ 𝑣 ∈ (𝐸𝑖) → ¬ 𝑤 ∈ (𝐸𝑖)))
5554orrd 393 . . . . . . . . . . . . . . 15 ((((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) ∧ 𝑁 ∈ (𝐸𝑖)) → (¬ 𝑣 ∈ (𝐸𝑖) ∨ ¬ 𝑤 ∈ (𝐸𝑖)))
5655ex 450 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) → (𝑁 ∈ (𝐸𝑖) → (¬ 𝑣 ∈ (𝐸𝑖) ∨ ¬ 𝑤 ∈ (𝐸𝑖))))
5710, 56syl5bir 233 . . . . . . . . . . . . 13 (((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) → (¬ ¬ 𝑁 ∈ (𝐸𝑖) → (¬ 𝑣 ∈ (𝐸𝑖) ∨ ¬ 𝑤 ∈ (𝐸𝑖))))
5857orrd 393 . . . . . . . . . . . 12 (((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) → (¬ 𝑁 ∈ (𝐸𝑖) ∨ (¬ 𝑣 ∈ (𝐸𝑖) ∨ ¬ 𝑤 ∈ (𝐸𝑖))))
59 anandi 871 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (𝐸𝑖) ∧ (𝑣 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))) ↔ ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∧ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))))
6059bicomi 214 . . . . . . . . . . . . . 14 (((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∧ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))) ↔ (𝑁 ∈ (𝐸𝑖) ∧ (𝑣 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))))
6160notbii 310 . . . . . . . . . . . . 13 (¬ ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∧ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))) ↔ ¬ (𝑁 ∈ (𝐸𝑖) ∧ (𝑣 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))))
62 ianor 509 . . . . . . . . . . . . 13 (¬ (𝑁 ∈ (𝐸𝑖) ∧ (𝑣 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))) ↔ (¬ 𝑁 ∈ (𝐸𝑖) ∨ ¬ (𝑣 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))))
63 ianor 509 . . . . . . . . . . . . . 14 (¬ (𝑣 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖)) ↔ (¬ 𝑣 ∈ (𝐸𝑖) ∨ ¬ 𝑤 ∈ (𝐸𝑖)))
6463orbi2i 541 . . . . . . . . . . . . 13 ((¬ 𝑁 ∈ (𝐸𝑖) ∨ ¬ (𝑣 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))) ↔ (¬ 𝑁 ∈ (𝐸𝑖) ∨ (¬ 𝑣 ∈ (𝐸𝑖) ∨ ¬ 𝑤 ∈ (𝐸𝑖))))
6561, 62, 643bitri 286 . . . . . . . . . . . 12 (¬ ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∧ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))) ↔ (¬ 𝑁 ∈ (𝐸𝑖) ∨ (¬ 𝑣 ∈ (𝐸𝑖) ∨ ¬ 𝑤 ∈ (𝐸𝑖))))
6658, 65sylibr 224 . . . . . . . . . . 11 (((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) → ¬ ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∧ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))))
6766ralrimiva 2966 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) → ∀𝑖 ∈ dom 𝐸 ¬ ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∧ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))))
68 inrab 3899 . . . . . . . . . . . 12 ({𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))}) = {𝑖 ∈ dom 𝐸 ∣ ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∧ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖)))}
6968eqeq1i 2627 . . . . . . . . . . 11 (({𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))}) = ∅ ↔ {𝑖 ∈ dom 𝐸 ∣ ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∧ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖)))} = ∅)
70 rabeq0 3957 . . . . . . . . . . 11 ({𝑖 ∈ dom 𝐸 ∣ ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∧ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖)))} = ∅ ↔ ∀𝑖 ∈ dom 𝐸 ¬ ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∧ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))))
7169, 70bitri 264 . . . . . . . . . 10 (({𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))}) = ∅ ↔ ∀𝑖 ∈ dom 𝐸 ¬ ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∧ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))))
7267, 71sylibr 224 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) → ({𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))}) = ∅)
7372ex 450 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) → (¬ 𝑣 = 𝑤 → ({𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))}) = ∅))
7473orrd 393 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) → (𝑣 = 𝑤 ∨ ({𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))}) = ∅))
7574ralrimivva 2971 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})∀𝑤 ∈ (𝑉 ∖ {𝑁})(𝑣 = 𝑤 ∨ ({𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))}) = ∅))
76 eleq1w 2684 . . . . . . . . 9 (𝑣 = 𝑤 → (𝑣 ∈ (𝐸𝑖) ↔ 𝑤 ∈ (𝐸𝑖)))
7776anbi2d 740 . . . . . . . 8 (𝑣 = 𝑤 → ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ↔ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))))
7877rabbidv 3189 . . . . . . 7 (𝑣 = 𝑤 → {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} = {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))})
7978disjor 4634 . . . . . 6 (Disj 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})∀𝑤 ∈ (𝑉 ∖ {𝑁})(𝑣 = 𝑤 ∨ ({𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑤 ∈ (𝐸𝑖))}) = ∅))
8075, 79sylibr 224 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → Disj 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))})
813, 9, 80hashiun 14554 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → (#‘ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}) = Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}))
8281eqcomd 2628 . . 3 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}) = (#‘ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}))
8382oveq1d 6665 . 2 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) = ((#‘ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))
849ralrimiva 2966 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∈ Fin)
85 iunfi 8254 . . . 4 (((𝑉 ∖ {𝑁}) ∈ Fin ∧ ∀𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∈ Fin) → 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∈ Fin)
863, 84, 85syl2anc 693 . . 3 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∈ Fin)
87 rabfi 8185 . . . . . 6 (dom 𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}} ∈ Fin)
884, 87syl 17 . . . . 5 (𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}} ∈ Fin)
8988adantl 482 . . . 4 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}} ∈ Fin)
90893ad2ant2 1083 . . 3 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}} ∈ Fin)
91 fveq2 6191 . . . . . . . 8 (𝑖 = 𝑗 → (𝐸𝑖) = (𝐸𝑗))
9291eqeq1d 2624 . . . . . . 7 (𝑖 = 𝑗 → ((𝐸𝑖) = {𝑁} ↔ (𝐸𝑗) = {𝑁}))
9392elrab 3363 . . . . . 6 (𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}} ↔ (𝑗 ∈ dom 𝐸 ∧ (𝐸𝑗) = {𝑁}))
94 eldifn 3733 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝑉 ∖ {𝑁}) → ¬ 𝑣 ∈ {𝑁})
95 eleq2 2690 . . . . . . . . . . . . . . . 16 ((𝐸𝑗) = {𝑁} → (𝑣 ∈ (𝐸𝑗) ↔ 𝑣 ∈ {𝑁}))
9695notbid 308 . . . . . . . . . . . . . . 15 ((𝐸𝑗) = {𝑁} → (¬ 𝑣 ∈ (𝐸𝑗) ↔ ¬ 𝑣 ∈ {𝑁}))
9794, 96syl5ibr 236 . . . . . . . . . . . . . 14 ((𝐸𝑗) = {𝑁} → (𝑣 ∈ (𝑉 ∖ {𝑁}) → ¬ 𝑣 ∈ (𝐸𝑗)))
9897adantl 482 . . . . . . . . . . . . 13 ((𝑗 ∈ dom 𝐸 ∧ (𝐸𝑗) = {𝑁}) → (𝑣 ∈ (𝑉 ∖ {𝑁}) → ¬ 𝑣 ∈ (𝐸𝑗)))
9998adantl 482 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐸 ∧ (𝐸𝑗) = {𝑁})) → (𝑣 ∈ (𝑉 ∖ {𝑁}) → ¬ 𝑣 ∈ (𝐸𝑗)))
10099imp 445 . . . . . . . . . . 11 ((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐸 ∧ (𝐸𝑗) = {𝑁})) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ¬ 𝑣 ∈ (𝐸𝑗))
101100intnand 962 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐸 ∧ (𝐸𝑗) = {𝑁})) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ¬ (𝑁 ∈ (𝐸𝑗) ∧ 𝑣 ∈ (𝐸𝑗)))
102101intnand 962 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐸 ∧ (𝐸𝑗) = {𝑁})) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ¬ (𝑗 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸𝑗) ∧ 𝑣 ∈ (𝐸𝑗))))
103102ralrimiva 2966 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐸 ∧ (𝐸𝑗) = {𝑁})) → ∀𝑣 ∈ (𝑉 ∖ {𝑁}) ¬ (𝑗 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸𝑗) ∧ 𝑣 ∈ (𝐸𝑗))))
104 eliun 4524 . . . . . . . . . 10 (𝑗 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ↔ ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))})
105104notbii 310 . . . . . . . . 9 𝑗 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ↔ ¬ ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))})
106 ralnex 2992 . . . . . . . . 9 (∀𝑣 ∈ (𝑉 ∖ {𝑁}) ¬ 𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ↔ ¬ ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))})
10791eleq2d 2687 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑁 ∈ (𝐸𝑖) ↔ 𝑁 ∈ (𝐸𝑗)))
10891eleq2d 2687 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑣 ∈ (𝐸𝑖) ↔ 𝑣 ∈ (𝐸𝑗)))
109107, 108anbi12d 747 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ↔ (𝑁 ∈ (𝐸𝑗) ∧ 𝑣 ∈ (𝐸𝑗))))
110109elrab 3363 . . . . . . . . . . 11 (𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ↔ (𝑗 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸𝑗) ∧ 𝑣 ∈ (𝐸𝑗))))
111110notbii 310 . . . . . . . . . 10 𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ↔ ¬ (𝑗 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸𝑗) ∧ 𝑣 ∈ (𝐸𝑗))))
112111ralbii 2980 . . . . . . . . 9 (∀𝑣 ∈ (𝑉 ∖ {𝑁}) ¬ 𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁}) ¬ (𝑗 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸𝑗) ∧ 𝑣 ∈ (𝐸𝑗))))
113105, 106, 1123bitr2i 288 . . . . . . . 8 𝑗 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁}) ¬ (𝑗 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸𝑗) ∧ 𝑣 ∈ (𝐸𝑗))))
114103, 113sylibr 224 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐸 ∧ (𝐸𝑗) = {𝑁})) → ¬ 𝑗 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))})
115114ex 450 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → ((𝑗 ∈ dom 𝐸 ∧ (𝐸𝑗) = {𝑁}) → ¬ 𝑗 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}))
11693, 115syl5bi 232 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → (𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}} → ¬ 𝑗 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}))
117116ralrimiv 2965 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → ∀𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}} ¬ 𝑗 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))})
118 disjr 4018 . . . 4 (( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = ∅ ↔ ∀𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}} ¬ 𝑗 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))})
119117, 118sylibr 224 . . 3 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → ( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = ∅)
120 hashun 13171 . . 3 (( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∈ Fin ∧ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}} ∈ Fin ∧ ( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = ∅) → (#‘( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) = ((#‘ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))
12186, 90, 119, 120syl3anc 1326 . 2 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → (#‘( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) = ((#‘ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))
12218, 13edglnl 26038 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})
1231223adant2 1080 . . 3 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → ( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})
124123fveq2d 6195 . 2 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → (#‘( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) = (#‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))
12583, 121, 1243eqtr2d 2662 1 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(#‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}) + (#‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) = (#‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  cdif 3571  cun 3572  cin 3573  c0 3915  {csn 4177  {cpr 4179   ciun 4520  Disj wdisj 4620  dom cdm 5114  Fun wfun 5882  cfv 5888  (class class class)co 6650  Fincfn 7955   + caddc 9939  #chash 13117  Σcsu 14416  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   UPGraph cupgr 25975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-edg 25940  df-uhgr 25953  df-upgr 25977
This theorem is referenced by:  finsumvtxdg2ssteplem3  26443
  Copyright terms: Public domain W3C validator