MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulerpathpr Structured version   Visualization version   GIF version

Theorem eulerpathpr 27100
Description: A graph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypothesis
Ref Expression
eulerpathpr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
eulerpathpr ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑃   𝑥,𝑉

Proof of Theorem eulerpathpr
StepHypRef Expression
1 eulerpathpr.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2622 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
3 simpl 473 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → 𝐺 ∈ UPGraph )
4 upgruhgr 25997 . . . . . 6 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph )
52uhgrfun 25961 . . . . . 6 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
64, 5syl 17 . . . . 5 (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺))
76adantr 481 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → Fun (iEdg‘𝐺))
8 simpr 477 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → 𝐹(EulerPaths‘𝐺)𝑃)
91, 2, 3, 7, 8eupth2 27099 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))}))
109fveq2d 6195 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = (#‘if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))})))
11 fveq2 6191 . . . 4 (∅ = if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))}) → (#‘∅) = (#‘if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))})))
1211eleq1d 2686 . . 3 (∅ = if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))}) → ((#‘∅) ∈ {0, 2} ↔ (#‘if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))})) ∈ {0, 2}))
13 fveq2 6191 . . . 4 ({(𝑃‘0), (𝑃‘(#‘𝐹))} = if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))}) → (#‘{(𝑃‘0), (𝑃‘(#‘𝐹))}) = (#‘if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))})))
1413eleq1d 2686 . . 3 ({(𝑃‘0), (𝑃‘(#‘𝐹))} = if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))}) → ((#‘{(𝑃‘0), (𝑃‘(#‘𝐹))}) ∈ {0, 2} ↔ (#‘if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))})) ∈ {0, 2}))
15 hash0 13158 . . . . 5 (#‘∅) = 0
16 c0ex 10034 . . . . . 6 0 ∈ V
1716prid1 4297 . . . . 5 0 ∈ {0, 2}
1815, 17eqeltri 2697 . . . 4 (#‘∅) ∈ {0, 2}
1918a1i 11 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → (#‘∅) ∈ {0, 2})
20 simpr 477 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(#‘𝐹))) → ¬ (𝑃‘0) = (𝑃‘(#‘𝐹)))
2120neqned 2801 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(#‘𝐹))) → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))
22 fvex 6201 . . . . . 6 (𝑃‘0) ∈ V
23 fvex 6201 . . . . . 6 (𝑃‘(#‘𝐹)) ∈ V
24 hashprg 13182 . . . . . 6 (((𝑃‘0) ∈ V ∧ (𝑃‘(#‘𝐹)) ∈ V) → ((𝑃‘0) ≠ (𝑃‘(#‘𝐹)) ↔ (#‘{(𝑃‘0), (𝑃‘(#‘𝐹))}) = 2))
2522, 23, 24mp2an 708 . . . . 5 ((𝑃‘0) ≠ (𝑃‘(#‘𝐹)) ↔ (#‘{(𝑃‘0), (𝑃‘(#‘𝐹))}) = 2)
2621, 25sylib 208 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(#‘𝐹))) → (#‘{(𝑃‘0), (𝑃‘(#‘𝐹))}) = 2)
27 2ex 11092 . . . . 5 2 ∈ V
2827prid2 4298 . . . 4 2 ∈ {0, 2}
2926, 28syl6eqel 2709 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(#‘𝐹))) → (#‘{(𝑃‘0), (𝑃‘(#‘𝐹))}) ∈ {0, 2})
3012, 14, 19, 29ifbothda 4123 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (#‘if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))})) ∈ {0, 2})
3110, 30eqeltrd 2701 1 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  {crab 2916  Vcvv 3200  c0 3915  ifcif 4086  {cpr 4179   class class class wbr 4653  Fun wfun 5882  cfv 5888  0cc0 9936  2c2 11070  #chash 13117  cdvds 14983  Vtxcvtx 25874  iEdgciedg 25875   UHGraph cuhgr 25951   UPGraph cupgr 25975  VtxDegcvtxdg 26361  EulerPathsceupth 27057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-uspgr 26045  df-vtxdg 26362  df-wlks 26495  df-trls 26589  df-eupth 27058
This theorem is referenced by:  eulerpath  27101
  Copyright terms: Public domain W3C validator