![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ussid | Structured version Visualization version GIF version |
Description: In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017.) |
Ref | Expression |
---|---|
ussval.1 | ⊢ 𝐵 = (Base‘𝑊) |
ussval.2 | ⊢ 𝑈 = (UnifSet‘𝑊) |
Ref | Expression |
---|---|
ussid | ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 = (UnifSt‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6658 | . . 3 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → (𝑈 ↾t (𝐵 × 𝐵)) = (𝑈 ↾t ∪ 𝑈)) | |
2 | id 22 | . . . . . 6 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → (𝐵 × 𝐵) = ∪ 𝑈) | |
3 | ussval.1 | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑊) | |
4 | fvex 6201 | . . . . . . . 8 ⊢ (Base‘𝑊) ∈ V | |
5 | 3, 4 | eqeltri 2697 | . . . . . . 7 ⊢ 𝐵 ∈ V |
6 | 5, 5 | xpex 6962 | . . . . . 6 ⊢ (𝐵 × 𝐵) ∈ V |
7 | 2, 6 | syl6eqelr 2710 | . . . . 5 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → ∪ 𝑈 ∈ V) |
8 | uniexb 6973 | . . . . 5 ⊢ (𝑈 ∈ V ↔ ∪ 𝑈 ∈ V) | |
9 | 7, 8 | sylibr 224 | . . . 4 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 ∈ V) |
10 | eqid 2622 | . . . . 5 ⊢ ∪ 𝑈 = ∪ 𝑈 | |
11 | 10 | restid 16094 | . . . 4 ⊢ (𝑈 ∈ V → (𝑈 ↾t ∪ 𝑈) = 𝑈) |
12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → (𝑈 ↾t ∪ 𝑈) = 𝑈) |
13 | 1, 12 | eqtr2d 2657 | . 2 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 = (𝑈 ↾t (𝐵 × 𝐵))) |
14 | ussval.2 | . . 3 ⊢ 𝑈 = (UnifSet‘𝑊) | |
15 | 3, 14 | ussval 22063 | . 2 ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊) |
16 | 13, 15 | syl6eq 2672 | 1 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 = (UnifSt‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∪ cuni 4436 × cxp 5112 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 UnifSetcunif 15951 ↾t crest 16081 UnifStcuss 22057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-rest 16083 df-uss 22060 |
This theorem is referenced by: tususs 22074 cnflduss 23152 |
Copyright terms: Public domain | W3C validator |