MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ussval Structured version   Visualization version   GIF version

Theorem ussval 22063
Description: The uniform structure on uniform space 𝑊. This proof uses a trick with fvprc 6185 to avoid requiring 𝑊 to be a set. (Contributed by Thierry Arnoux, 3-Dec-2017.)
Hypotheses
Ref Expression
ussval.1 𝐵 = (Base‘𝑊)
ussval.2 𝑈 = (UnifSet‘𝑊)
Assertion
Ref Expression
ussval (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊)

Proof of Theorem ussval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . 5 (𝑤 = 𝑊 → (UnifSet‘𝑤) = (UnifSet‘𝑊))
2 fveq2 6191 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
32sqxpeqd 5141 . . . . 5 (𝑤 = 𝑊 → ((Base‘𝑤) × (Base‘𝑤)) = ((Base‘𝑊) × (Base‘𝑊)))
41, 3oveq12d 6668 . . . 4 (𝑤 = 𝑊 → ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤))) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))))
5 df-uss 22060 . . . 4 UnifSt = (𝑤 ∈ V ↦ ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤))))
6 ovex 6678 . . . 4 ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ∈ V
74, 5, 6fvmpt 6282 . . 3 (𝑊 ∈ V → (UnifSt‘𝑊) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))))
8 ussval.2 . . . 4 𝑈 = (UnifSet‘𝑊)
9 ussval.1 . . . . 5 𝐵 = (Base‘𝑊)
109, 9xpeq12i 5137 . . . 4 (𝐵 × 𝐵) = ((Base‘𝑊) × (Base‘𝑊))
118, 10oveq12i 6662 . . 3 (𝑈t (𝐵 × 𝐵)) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊)))
127, 11syl6reqr 2675 . 2 (𝑊 ∈ V → (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊))
13 0rest 16090 . . 3 (∅ ↾t (𝐵 × 𝐵)) = ∅
14 fvprc 6185 . . . . 5 𝑊 ∈ V → (UnifSet‘𝑊) = ∅)
158, 14syl5eq 2668 . . . 4 𝑊 ∈ V → 𝑈 = ∅)
1615oveq1d 6665 . . 3 𝑊 ∈ V → (𝑈t (𝐵 × 𝐵)) = (∅ ↾t (𝐵 × 𝐵)))
17 fvprc 6185 . . 3 𝑊 ∈ V → (UnifSt‘𝑊) = ∅)
1813, 16, 173eqtr4a 2682 . 2 𝑊 ∈ V → (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊))
1912, 18pm2.61i 176 1 (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915   × cxp 5112  cfv 5888  (class class class)co 6650  Basecbs 15857  UnifSetcunif 15951  t crest 16081  UnifStcuss 22057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-rest 16083  df-uss 22060
This theorem is referenced by:  ussid  22064  ressuss  22067
  Copyright terms: Public domain W3C validator