MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ussid Structured version   Visualization version   Unicode version

Theorem ussid 22064
Description: In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017.)
Hypotheses
Ref Expression
ussval.1  |-  B  =  ( Base `  W
)
ussval.2  |-  U  =  ( UnifSet `  W )
Assertion
Ref Expression
ussid  |-  ( ( B  X.  B )  =  U. U  ->  U  =  (UnifSt `  W
) )

Proof of Theorem ussid
StepHypRef Expression
1 oveq2 6658 . . 3  |-  ( ( B  X.  B )  =  U. U  -> 
( Ut  ( B  X.  B ) )  =  ( Ut  U. U ) )
2 id 22 . . . . . 6  |-  ( ( B  X.  B )  =  U. U  -> 
( B  X.  B
)  =  U. U
)
3 ussval.1 . . . . . . . 8  |-  B  =  ( Base `  W
)
4 fvex 6201 . . . . . . . 8  |-  ( Base `  W )  e.  _V
53, 4eqeltri 2697 . . . . . . 7  |-  B  e. 
_V
65, 5xpex 6962 . . . . . 6  |-  ( B  X.  B )  e. 
_V
72, 6syl6eqelr 2710 . . . . 5  |-  ( ( B  X.  B )  =  U. U  ->  U. U  e.  _V )
8 uniexb 6973 . . . . 5  |-  ( U  e.  _V  <->  U. U  e. 
_V )
97, 8sylibr 224 . . . 4  |-  ( ( B  X.  B )  =  U. U  ->  U  e.  _V )
10 eqid 2622 . . . . 5  |-  U. U  =  U. U
1110restid 16094 . . . 4  |-  ( U  e.  _V  ->  ( Ut  U. U )  =  U )
129, 11syl 17 . . 3  |-  ( ( B  X.  B )  =  U. U  -> 
( Ut  U. U )  =  U )
131, 12eqtr2d 2657 . 2  |-  ( ( B  X.  B )  =  U. U  ->  U  =  ( Ut  ( B  X.  B ) ) )
14 ussval.2 . . 3  |-  U  =  ( UnifSet `  W )
153, 14ussval 22063 . 2  |-  ( Ut  ( B  X.  B ) )  =  (UnifSt `  W )
1613, 15syl6eq 2672 1  |-  ( ( B  X.  B )  =  U. U  ->  U  =  (UnifSt `  W
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   U.cuni 4436    X. cxp 5112   ` cfv 5888  (class class class)co 6650   Basecbs 15857   UnifSetcunif 15951   ↾t crest 16081  UnifStcuss 22057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-rest 16083  df-uss 22060
This theorem is referenced by:  tususs  22074  cnflduss  23152
  Copyright terms: Public domain W3C validator